
Solving the Time-Independent Schrödinger Equation:

Instructor Notes∗

David G. Robertson†

Department of Physics and Astronomy

Otterbein College, Westerville, OH 43081

(Dated: December 14, 2009)

Abstract

Some notes on the simulations are presented, along with solutions to the exercises. Please contact

the author if you have any comments or suggestions.

∗ Work supported by the National Science Foundation under grant CCLI DUE 0618252.
†Electronic address: drobertson@otterbein.edu

1



Contents

I. Goals and Time Needed 2

II. Notes on the Simulation Projects 3

III. Notes on the ODE Exercises 6

IV. Sample Programs 10

References 11

I. GOALS AND TIME NEEDED

This module is an introduction to the “shooting” technique for solving boundary value

problems in one dimension, with application to the time-independent Schrödinger equation.

Its principal goals are:

• to provide an opportunity to develop insight into simple quantum systems; and

• to familiarize students with basic concepts involved in the numerical solution of bound-

ary value problems.

In my experience, working through these kinds of exercises is a great way to develop

intuition about how quantum mechanics works. The shooting method itself provides a nice

way to see why bound states generically have quantized energy levels, for example, and the

ability to generate solutions quickly for arbitrary potentials allows one to develop a real

feel for how wavefunctions behave. A number of interesting and common numerical issues

also arise, including integration techniques for ordinary differential equations, root finding

algorithms, and numerical quadrature.

The minimal physics background required includes a basic exposure to wavefunctions and

the time-independent Schrödinger equation, at the level of a typical sophomore-level course

on modern physics. However, more advanced students will be able to do more with the

exercises, and the experience can be correspondingly richer for them.

My estimate is that one to two weeks of class time, assuming 3-4 hours per week in class

and some work outside of it, should be sufficient to explore the basic numerical issues and

2



develop codes to solve the time-independent Schrödinger equation, at least for symmetric

potentials (where the wavefunctions are parity eigenstates). This depends somewhat on the

level of detail pursued on the numerical side. With a minimal approach to the numerics,

e.g., using the simple Euler method for integration, the module can likely be done in a week.

If the instructor wishes to explore the material in the appendix of the Student Manual, then

another week will probably be required.

II. NOTES ON THE SIMULATION PROJECTS

1. Infinite Square Well

Solving this problem will get the students through most of the technical difficulties,

making the other projects relatively straightforward. It is also a simple problem ana-

lytically and the exact results are all known.

My preference at the outset is to choose m so that h̄2/2m = 4/π2; this makes the exact

eigenvalues very simple: En = n2. After the code is working, students can recast the

problem in more physical units, e.g., with an electron and using eV and Å (or nm).

Then do all the remaining exercises in these units.

In this regard it is helpful to keep in mind that h̄c ≈ 1973 eV Å and mec
2 = 0.511×106

eV. Thus, for example,

h̄2

2me

=
(h̄c)2

2mec2
=

(1987)2

2× 0.511× 106
≈ 3.86 (2.1)

in these units.

My experience is that the the part of the code that brackets E will be the most

confusing for the students. The boundary condition in this case is very simple: just

that ψ vanish at the edge of the well. They will need to keep track of the last value

of ψ at the edge (or at least its sign), then compare the new value to the last. If the

sign has changed, go back to the previous energy and halve the step size. If not, the

new value becomes the old value and the energy is incremented.

The sample codes all use the 4th-order Runge-Kutta integration, which is the most ac-

curate one presented in the module. With this algorithm rather modest step sizes may

be used, say 0.01. If Euler’s method is used the step size will need to be significantly

smaller to get accurate results.

3



2. Finite Square Well

This problem is really the heart of the module.

The new wrinkle is the need to integrate past the edge of the well. With a wrong

eigenvalue the solution will eventually diverge towards either plus or minus infinity.

The same bracketing logic applies, but we now test the value of ψ at some xmax beyond

the edge of the well. In fact, the code should integrate until xmax is reached or the

absolute value of ψ grows beyond some reasonable value, say 5.0. When this happens

it is clear that the solution is diverging, and additional integration is a waste.

Students will need to integrate far enough into the classically forbidden region, how-

ever, and they should spend some time thinking about just how far “far enough” is.

You can start them off by noting that in ths region the true wavefunction decays as

exp(−κx) where κ depends on E. So they can estimate the penetration depth and

then set the integration to go comfortably past this (a few more e-foldings, say). They

should beware that these considerations change as they approach the top of the well;

for weakly-bound states, the wavefunctions can extend significantly into the classically

forbidden region.

Results for the eigenvalues can be compared to those obtained in the standard analyti-

cal calculation, although this involves solving numerically the transcendental equations

that arise. Doing this for an electron in a well 2 nm wide and 1 eV deep, I find four

bound state eigenvalues:

E1 = 0.0663 eV, E2 = 0.262 eV, E3 = 0.574 eV, E4 = 0.946 eV. (2.2)

3. Other Potentials

(a) Harmonic Oscillator

This problem holds few surprises once the finite well has been mastered. Again,

students will want to make sure they are integrating far enough into the forbidden

region. In this case they might have their code determine the classical turning

points for the assumed E, then integrate some reasonable distance past this.

(b) Anharmonic Oscillator

4



A nice exercise is to ask the students to predict how the energies will change if

the coefficient of the anharmonic term is increased (or decreased).

(c) Linear Potential

Students can examine in this case how the (de Broglie) wavelength of the particle

changes across the well.

4. Well with Perturbation

This is a good exercise if the students have seen stationary-state perturbation theory –

they can compute the eigenvalues numerically and compare to the perturbation results.

Otherwise it is just another potential to solve. Again, you can ask the students how

the energies will change with the addition of the bump. A subtle point is that the

odd solutions are affected much less than the even ones, because the unperturbed

wavefunctions are anyway passing through zero in the neighborhood of the bump.

5. Orthogonality

No surprises here.

6. Model for Covalent Bonding

This is a very crude model of molecular binding, but it does show some of the relevant

features of the real problem. In my experience students find this quite illuminating,

perhaps more so than it deserves. It is based on material in ref. [1].

For a well width of 1.03 Å, I find a depth of 18.72 eV gives the desired ground state

energy. The first excited state (odd parity) is then at −5.22 eV. The proton-proton

contribution to the energy is

Vpp ≈
(

e2

4πε0h̄c

)
h̄c

B
,

where the (dimensionless) factor in parentheses is known as the “fine structure con-

stant” and has the value 1/137. Hence

Vpp ≈
1973

137× 1.2
eV = 12 eV.

Adding this to the electron energies calculated above gives the total energy of the

system.

5



The result is that the ground state configuration of the electron is bound (has negative

total energy), while the first excited state has positive total energy. If our model

included electromagnetic interactions, it would break apart and become a separate H

atom and proton; this is the configuration with minimum energy.

The wavefunctions tell the basic tale. In the ground state, the electron has significant

probability to be found between the protons, hence it can hold them together via

the Coulomb force. The electron is in some sense “shared” between the protons. In

the unbound state, on the other hand, the wavefunction vanishes at the center of the

bump and the electron has much lower probability to be found between the protons

compared to the ground state. It thus fails to bind the protons together.

III. NOTES ON THE ODE EXERCISES

1. Consider the equation
dy

dx
= −xy

with initial condition y(0) = 1, which has the exact solution y = exp(−x2/2). Study the

numerical integration of this using the methods described above. In particular, verify

that the errors (difference between numerical and exact solutions) decrease according

to the expected power of ε.

A good approach here is to evaluate the solution at a fixed endpoint, say, x = 1, and

vary the stepsize ε. The error should obey a power law in ε,

error ∝ εn,

so a plot of log(error) versus log(ε) should give a line of slope n. Results for Euler’s

method and the second order RK algorithm are shown in fig. 1. The calculated slopes

are very close to the expected values n = 1 and n = 2, respectively.

2. Generalize one or more of the schemes presented here to solve a system of two coupled

ODEs, and apply it to solve Newton’s second law for the simple harmonic oscillator

6



0.0 

2.0 

4.0 

6.0 

2.0  3.0  4.0  5.0 

‐L
og
(e
rr
or
) 

‐Log(epsilon) 

Euler's Method 

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

1.0  2.0  3.0  4.0 

‐L
og
(e
rr
or
) 

‐Log(epsilon) 

Second‐Order Runge‐Ku6a 

FIG. 1: Error scaling for Euler’s method and the second order Runge-Kutta algorithm.

(with m = 1):

dx

dt
= v

dv

dt
= −ω2x.

A simple criterion for accuracy is the degree to which a known integral of the motion,

for example, the energy, is conserved in the evolution. Study the constancy of 2E =

v2 + ω2x2 for the various algorithms and choices for ε.

As an example, here is the generalization of the second-order Runge-Kutta algorithm

for a pair of ODEs involving two functions y1(x) and y2(x). We define

k11 = εf1(x, y1, y2)

k12 = εf2(x, y1, y2)

and

k21 = εf1(x+ ε/2, y1 + k11/2, y2 + k12/2)

k22 = εf2(x+ ε/2, y1 + k11/2, y2 + k12/2),

that is, separate ks for each of the functions. Then

y1(x+ ε) = y1(x) + k21

y2(x+ ε) = y2(x) + k22,

correct to O(ε3). The fourth-order algorithm generalizes in an analogous way.

Another measure of the error that can be used in this case is the difference between

the starting value of x and the value of x at times tn = nT with T = 2π/ω and

n = 1, 2, 3, . . .

7



3. Another common test of accuracy is to integrate backwards to the original starting

point, using the ending x, y as the initial condition. The difference between the result-

ing value for y and the original initial condition then gives a measure of the overall

accuracy of the result. Apply this test to the example from problem 1, for the various

algorithms discussed above.

This criterion can be used as a measure of the error when the exact solution is not

already known.

4. Study the approximation given in eq. (3.19), by using it to solve the equation

dy

dx
= −y,

with the initial condition y(0) = 1. This equation has the exact solution

y = e−x,

of course. To start the calculation off we need both y(0) and y(ε); you can use eq.

(3.15) to obtain y(ε). Eq. (3.19) can then be used to generate the solution for other

values of x. Does this give a reasonable approximation to the exact answer? If not,

can you determine why?

The result of this calculation should look something like fig. 2. An oscillation eventu-

ally develops, with a growing amplitude, that dominates the exponentially decreasing

solution we want.

The reason for this can be traced to the recursion relation (A19). If we assume a

solution of the form

y(nε) = Azn, (3.1)

with A and z constants, then plugging this into eq. (A19) gives an equation for z:

z2 + 2εz − 1 = 0. (3.2)

This has solutions

z+ =
√

1 + ε2 − ε ≈ 1− ε (3.3)

z− = −
√

1 + ε2 − ε ≈ −(1 + ε), (3.4)

8



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

FIG. 2: Solution for y(x) versus x using the “bad” second-order algorithm described in the text

(with ε = 0.1). The onset of the unwanted oscillating solution can be seen around x = 5.

where the approximate forms are obtained for small ε. The solution z+ is positive and

less than one, and so decreases from step to step; this is the exponentially decreasing

solution we want. The solution z−, on the other hand, is negative with magnitude

greater than one; it corresponds to a spurious solution

y ∝ (z−)n = (−1)n(1 + ε)n. (3.5)

It therefore grows in size with increasing n (because 1 + ε > 1) and alternates in sign

from step to step.

Now the point is that the general solution to the difference equation (A19) is a linear

combination of the two solutions involving z±. Even if we can somehow arrange that

the initial values y(0) and y(ε) match only the desired (z+) solution, roundoff errors

will inevitably introduce a small admixture of the unwanted solution as we proceed.

Since this solution naturally grows with n, it is guaranteed to eventually dominate the

results.

The moral here is that the apparent accuracy of an algorithm is not the only important

consideration – stability is vital as well. The stability and accuracy of integration

algorithms is a large and technical subject, one to which I cannot hope to do justice

here. Readers should be aware that these issues exist, and if further details are needed

9



a reference on numerical analysis should be consulted.

IV. SAMPLE PROGRAMS

A set of sample programs, written in C, is distributed with the module. Typically they

take some command line arguments, with other parameters hard-wired via #define state-

ments. Comments in the programs explain the arguments.

Programs related to the ODE exercises are:

1. euler1.c

Solves the equation from exercise A.4.1 using Euler’s method.

2. rk1.c

Solves the equation from exercise A.4.1 using the second order Runge-Kutta algorithm.

3. rk2.c

Solves the equation from exercise A.4.2 (harmonic oscillator) using the second order

Runge-Kutta algorithm generalized to two coupled equations.

4. bad4.c

Solves the equation from exercise A.4.4 using the “bad” algorithm from the text (eq.

(A19)).

Programs related to the physics projects are:

5. ISW-euler.c

Solves the TISE for the infinite square well using Euler’s method.

6. ISW-rk4.c

Solves the TISE for the infinite square well using the fourth-order Runge-Kutta algo-

rithm.

7. FSW-rk4.c

Solves the TISE for the finite square well using the fourth-order Runge-Kutta algo-

rithm. Integration from the center of the well towards the edge.

10



8. FSW-rk4.c

Solves the TISE for the finite square well using the fourth-order Runge-Kutta algo-

rithm. Integration from outside the well to the center, with an estimate for the starting

derivative ψ′.

9. H2mol.c

Solves the TISE for the double square well used in the model of H+
2 .

[1] R.D. Knight, Physics for Scientists and Engineers (Addison Wesley, 2004).

11


