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Abstract

This module introduces some basic concepts and techniques of par-
allel computing in the context of simple physical systems. It focuses
on the distributed memory model of parallel computation and uses
MPI (Message Passing Interface) as the programming environment.
The physical systems studied illustrate naturally the idea of domain
decomposition. Besides learning the basics of MPI programming, stu-
dents can explore a range of issues related to performance in parallel
computation.

This module is designed for students with fairly sophisticated pro-
gramming skills in C, C++ or Fortran. The students should ideally
have taken (or be taking) an upper-level course in classical mechan-
ics, as familiarity with systems of coupled oscillators may be helpful.
Students with only introductory physics should also be fine, however,
especially if they have had some exposure to differential equations.

Access to a distributed-memory parallel computing system is also
required. This can be a dedicated system with specialized hardware,
often accessible via regional or national supercomputing centers, but a
simple “network of workstations” can also be used. This is a collection
of computers connected using ordinary ethernet, with the MPI library
and associated low-level drivers installed. Virtually all such systems
will use the Unix operating system and some sort of batch processing;
these tools will need to be mastered.

Finally, a tool for visualization will be very useful. gnuplot is a
freely available program that allows the necessary visualization, and
its use is described below. Other tools such as Vtk, Matlab and Math-
ematica could also be used if desired.
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1 Overview

This module introduces basic concepts of distributed memory parallel com-
puting in the context of simple physical systems. The emphasis is on the
basic ideas and techniques of parallel computing rather than the solution of
a sophisticated or timely scientific problem. The main problem considered
is the solution of the equations of motion for a set of coupled oscillators in
one and two dimensions, or equivalently, the wave equation in one and two
dimensions.

Writing a parallel application involves decomposing a problem into tasks,
which are then assigned to processors. In many cases, the tasks are not in-
dependent of one another, with the result that some sort of communication
between processors is necessary. This might involve sending data from proces-
sor to processor, synchronization, etc. This inter-processor communication is
the new and interesting feature of parallel programming, and standard pro-
gramming models and tools have been developed to enable it. One of these is
the Message Passing Interface (MPI) [1, 2], which is introduced here. MPI is
a library of functions that can be called from a C, C++ or Fortran program
to allow data transfer, collective operations among processors, and more.

The principal goals of this module are

• to familiarize students with the basic ideas and techniques of parallel
computing;

• to introduce them to the MPI standard library for inter-processor com-
munication; and

• to have them use the basic MPI tools to write a parallel code for solving
the equations of motion for a coupled set of oscillators.

This last example may seem simple, but in fact it contains most of the
features that make parallel programming subtle and interesting.

2 What You Will Need

It will be essential that the students are familiar with programming in a high
level language like C, C++ or Fortran. (Full MPI implementations exist for
these languages.) In particular, students using C will need to be familiar
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with the basics of pointers. They will also ideally have taken (or be taking)
an upper-level course in classical mechanics.

You will of course need access to a parallel computing environment with
MPI. If you do not have a local “Beowulf cluster,” you may be able to
access such a system at a nearby regional or national supercomputing center.
Since nearly all such machines use the Unix operating system, students will
probably need to be familiar with this. In addition, if it is a public computer
there will certainly be a batch processing system in place that will need to
be understood.

A way of visualizing the oscillator chain will also be very helpful, both to
make the results visible and as an aid in debugging. Especially if students
pursue higher dimensional applications – the 2d case is both reasonably ac-
cessible and highly instructive – then in my experience a good visualization
tool will be absolutely essential. gnuplot [3] is a freely available program
that allows the necessary visualization, though at a fairly basic level; some
examples involving gnuplot are given below. However, other tools, such as
Matlab or Mathematica, could also be used.

3 Parallel Computing Basics

Parallel computing refers to a general process whereby a computational task
is broken into pieces which can be worked on concurrently. A parallel com-
puter is basically a set of processors that are wired together to enable this. By
working on different parts of the problem simultaneously, a parallel compu-
tation can be performed in less time than a “serial” one, running on a single
processor. Alternatively, for the same computing time a larger problem can
be solved. Essentially all modern high-performance computing is parallel
computing, because the price-to-performance ratio for parallel systems is so
low. Historically, high-performance computing meant the development of
very sophisticated, specialized processors and memory to enable the fastest
possible calculation. Eventually, however, many of the ideas and develop-
ments in this area were carried over to the commodity microprocessor world,
with the result that these processors became much more powerful. At present
it is simply enormously cheaper to make a fast computer by connecting to-
gether a (possibly large) number of commodity CPUs than by working to
engineer a single super-fast processor. As of this writing, the largest parallel
computers in the world have several tens of thousands of processors.
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Writing a parallel application involves decomposing a problem into tasks,
which are assigned to different processors. In the ideal case these tasks
are independent of one another, so the problem is “perfectly parallel, ” or
“embarrassingly parallel.” As a simple example, say we have a model of some
physical system that depends on a number of parameters. For example, this
could be a model of fluid behavior in which quantities like the fluid density,
temperature, etc. can be varied. We would like to calculate the results
of the model for a range of possible densities and temperatures, to make
plots indicating the range of variation. Ordinarily we would achieve this by
running the program many times with different parameter values (or writing
the program so that it changes the parameter values and recalculates the
model, outputting the results to a file, let’s say).

With a parallel computer, however, we could run the model simultane-
ously, with different parameter values, on as many processors as are available.
A key point here is (the assumption) that the individual runs are indepen-
dent. So there is no reason not to just run the code on a multitude of
processors, and we expect that if there are N processors then the job can
be finished in 1/N of the serial time. This represents the maximum possible
speedup from parallel computation.

In many cases, however, the tasks are not completely independent, with
the result that some sort of communication between processors is necessary.
This might involve, for example, sending data from processor to processor,
synchronization of processors, an so on. This inter-processor communication
is at the heart of parallel programming, and is what makes parallel computing
interesting. In recent years, standards for programming parallel computers
have become well established. One such standard is the Message Passing
Interface (MPI), a library of functions that can be called from C, C++ or
Fortran programs to enable communication between processors in a parallel
computer [1].

As a specific example where data exchange is required, let’s consider the
problem of calculating the propagation of a wave in some region. The physics
is described by the wave equation, a partial differential equation in space and
time. In two dimensions,

1

v2
∂2D

∂t2
=
∂2D

∂x2
+
∂2D

∂y2
(1)

where D = D(x, y, t) is the wave displacement. and v is the wave speed.
Our task is to (approximately) solve this equation given some suitable initial
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Figure 1: Part of the uniform grid introduced to discretize the wave equation.
The black dot is the (i, j) grid point; the shaded dots are the nearest-neighbor
points involved in the approximate second derivatives.

and boundary conditions. Note that an exceedingly large number of scien-
tific problems are framed in terms of partial differential equations, so our
considerations here will have wide applicability.1

Now, on a computer we cannot calculate at an infinite number of space
points, so to begin with let us make a grid of discrete points at which we will
evaluate the displacement. For simplicity we may imagine this is a uniform
grid, i.e., that the distance between points is the same in both the x and y
directions and is unchanging over the entire region of interest. (Depending
on the specific problem under consideration, it could be advantageous to use
a non-uniform grid. The basic ideas we are discussing would be unchanged
however; only the details would be altered.) We can label the grid points
with integer indices i and j, for the x and y directions, respectively, and call
the wave displacement at the i, j grid point

Dij(t) .

1A partial list from physics: diffusion and heat flow, electromagnetic potentials and
fields, quantum wavefunctions, fluid flow, etc.
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Thus we have a set of functions, one for each value of i and j, that depend
on t.

Next, we must approximate the space derivatives with differences. To
stay focused on the issues that arise when solving this problem on a parallel
computer let us skip over the details of this process for now, and merely
observe that derivatives are “non-local”; that is, the derivative of a function
at a point involves not only the value of the function at that point, but
also in the neighborhood of the point. After all, graphically the derivative
represents the slope of the (tangent to the) function at the point of interest.
So it expresses “where the function is going” in the neighborhood of that
point.

The upshot is that an approximate partial derivative of D at grid point
i, j with respect to x, say, will involve not only the value of Dij itself but
also those of its neighbors Di+1,j and/or Di−1,j. Similarly, the y derivative
will involve Di,j+1 and Di,j−1. Second derivatives are of course derivatives of
derivatives, and so also involve neighboring grid points, perhaps even farther-
flung neighbors than the nearest ones. It turns out that one possible approx-
imation to the derivatives in eq. (1) can be written

∂2D

∂x2
+
∂2D

∂y2
≈ 1

h2
[Di+1,j +Di−1,j +Di,j+1 +Di,j−1 − 4Dij] , (2)

where h is the spacing between the grid points. The interested reader may
consult sect. 3.2 below for details of how this is obtained, but for now observe
that the expression involves the nearest neighbors, as expected, and in a nice,
symmetric way.

Using eq. (2), the wave equation takes the form of a set of coupled
equations for the displacements on the grid:

d2

dt2
Dij =

v2

h2
[Di+1,j +Di−1,j +Di,j+1 +Di,j−1 − 4Dij] . (3)

We would now also interpret the time derivatives as differences, allowing us
to calculate the wave displacements at a series of grid points in time, or
“time steps.” The details of this will also be given below; the main thing
to notice right now is that as we step forward in time, what happens to
the displacement at the ij site depends on the displacement there as well
as at the displacements at the nearest neighbor sites. This sort of coupling
between grid points is very characteristic of differential equations and hence
is exceedingly common in computer simulations of physical systems.
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Figure 2: Decomposition of a planar domain by strips. Separate processors
are assigned to the four rectangles and work concurrently.

So the typical type of problem we have in mind is this: given some initial
state of the wave, and suitable boundary conditions,2 we use eq. (3) to cal-
culate the wave state (displacements) at a later time. The general structure
of this evolution is such that each point is coupled to its nearest neighbors.
Now let us think about how we might break this problem into pieces and
implement it on a parallel computer.

The most natural approach would be to divide the physical domain into
pieces, or sub-domains, and assign each sub-domain to a different processor.
This is known in the trade as “domain decomposition.” One possibility, de-
composition by strips, is shown in fig. 2; other choices are possible. Now
imagine the problem as seen by each processor. It has a set of grid points
to update using the discrete wave equation, which couples nearest neighbors.
For most of the points in the sub-domain this is no problem, since their
neighbors are also in the sub-domain and hence are known to the processor.

2The need for boundary conditions can be seen from the difference equation (3). If
we consider a grid point on the boundary of the domain then it is missing a neighbor on
one side; how then do we apply eq. (3) for these points? The answer is that we must
specify explicitly what happens at the edge points, either by giving the displacements there
or by specifying the derivative in a direction normal to the boundary. In the language
of continuum partial differential equations, these correspond to Dirichlet and Neumann
boundary conditions, respectively.
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However, points along an edge that is adjacent to another sub-domain are a
problem: to update these we need the displacements at the neighbor points,
but one of the neighbor points is in a different sub-domain and hence stored
in the memory of a different processor. Before we can update the edge dis-
placements we will need to get the neighbor values from the other processor,
and vice versa, of course.3 Hence the need for data exchange, or “message
passing,” in this general class of problems.

Now, for the parallel version to actually be faster than a serial program,
the time spent updating the displacement values – which is done concurrently
by the processors – must be sufficiently large compared to the time spent
sending data around. Stated differently, if no communication were required
then N processors could update the same number of points in 1/N the time
of a single processor – this is the perfectly parallel case. The communication
overhead reduces this speedup, but as long as it is small compared to the
computation time there will still be a speedup. For our particular problem
it is noteworthy that the number of points to update (the computational
load) scales like the area of the grid, while the number of edge values to
send/receive only scales like the grid perimeter. So as the number of grid
points increases we expect the computational load to grow faster than the
communication overhead and to eventually dominate. The exact location of
the “break-even” point, where the computation becomes significant enough to
provide a net speedup with the parallel algorithm, depends on many factors
and is very difficult to predict.

Note that for some problems the ratio of computation to communication
may be so low that it is just not worth parallelizing. This is basically a sign
that the individual tasks are not sufficiently independent.

On the subject of speedup, you might wonder if it would be better to
decompose the domain in a different way, e.g. by “checkerboarding” as in
fig. 3. Without worrying too much about the details, it is clear that this
will require more data exchanges (there are more interfaces between sub-
domains) but that each data exchange will involve a smaller amount of data.
So which is best? Is it better to send relatively more small messages, or fewer
but larger messages? It depends on the computer! Typically the time needed
to send a message can be thought of as consisting of two parts: a general
overhead or “latency” that reflects the time needed to set up the message,

3If the edge points are an actual physical boundary of the domain, then we already
have boundary conditions that tell us what to do and nothing new is required.
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Figure 3: Checkerboard decomposition of a planar domain.

and the time to actually send it, which scales like the size of the message.
Thus

Tmsg = Tlat +mTd (4)

where m is the number of data values to be sent. Tlat and Td are constants
that depend, in general, on the details of the machine hardware and the
software that performs the message passing. For some systems the latency
may be so high that it pays to send fewer messages, at the cost of making
them larger. For other systems the opposite may be the case. Part of the art
of parallel programming is in tailoring algorithms for maximum speed and
efficiency on different computing hardware.

3.1 Taxonomy of Parallel Computers

There are many possible arrangements for parallel computing hardware.
They can generally be characterized as possessing “distributed memory”,
“shared memory”, or some combination thereof.

The distributed memory model (fig. 4) is a very general one. In such
systems each physical processor is “isolated” from the others, in the sense
that its own memory is accessible only to it. As an extreme example, a set
of networked PCs is a distributed memory system. Each CPU has access
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Figure 4: Distributed memory architecture for parallel computers.

to a set of memory. It can read from and write to this memory, but other
processors cannot access this memory directly. If some processor needs data
that resides in the memory of another CPU, then that data must be explicitly
sent from one to the other. This is the natural arena for the message passing
paradigm we have been discussing.

In a shared memory architecture (fig. 5), all processors have direct access
to a shared pool of memory. Any CPU can read from or write to any of the
shared memory. This simplifies significantly the problem of programming,
as messages to not need to be sent. In our diffusion example, we could
implement the same domain decomposition as before, with the same result,
that each processor (CPU) needs data from its neighbor CPUs to proceed.
In this case, however, each CPU can simply read the needed data from the
shared memory, and use it to update the value of all points assigned to it.
The only real programming issue that arises is one of scheduling: we don’t
want any processor to update its edge points before its neighbors have had
a chance to use the current values. So we need to insure that the processors
are synchronized in some way.

Other examples could be discussed to show that programming in a shared
memory environment is generally simpler than is message passing, but per-
haps this will be intuitively clear. The real limitation of shared memory
parallelism has to do with how the CPUs are physically connected to the
memory. There is a bunch of circuitry called a “memory bus” that accom-
plishes this, but it is too difficult to separately wire each CPU to each memory
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Figure 5: Shared memory architecture for parallel computers.

location, especially if there are very many CPUs. So in practice there is es-
sentially a single “pipe” through which data moves between the CPUs and
the memory. The problem is that as the number of CPUs grows this pipe is
more and more easily saturated, with the result that CPUs spend more and
more time waiting for data. The net effect is to limit the number of CPUs
that can be practically used, and at present this effective limit is on the or-
der of a few tens of processors. By contrast, as of this writing the largest
distributed memory machines have several tens of thousands of processors.

Combinations or hybrid designs are also possible. A fairly common ar-
rangement, for example, is to have a collection of “nodes”, each of which
is a multi-CPU computer. The nodes are then wired together to create the
full parallel computer. Within each node the CPUs share a pool of memory,
but between nodes data must be sent back and forth. It is even possible
for the system memory to be physically distributed but “logically shared”;
that is, the operating system can make it appear to the programmer that the
memory is shared, while actually handling data exchanges behind the scenes.
From a user’s point of view this generally means that while programming ap-
pears to feature the relative simplicity of the shared memory model, some
of the shared memory is “fast” (the memory that is physically attached to
the CPU) while other memory is “slow” (memory that is attached to other
CPUs and for which the system must move data through the machine). The
reader will appreciate that this can make writing efficient, high-performance
programs for such machines very subtle.

In this module we will adopt the message passing paradigm, as it allows
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the most control over program execution and (most importantly) scaling to
the largest number of processors. Our next task is to explore how such com-
puters may be programmed. In recent years certain standards for parallel
computing have arisen, notably (in the distributed-memory world) the Mes-
sage Passing Interface (MPI). MPI is actually a library of functions that can
be called from a C, C++ or Fortran program, and that enable the program-
mer to send and receive data between processors. It also provides a num-
ber of high level features including collective communication, user-defined
datatypes, and virtual topologies of processors. In section 4 we will explore
the basics of parallel programming using MPI.

3.2 Addendum: Numerical Derivatives and Boundary
Conditions

Here we examine the numerical approximation of derivatives in more detail.
In fact this is a large subject and there are many issues and options; we
shall only touch on the basics. The interested reader is advised to consult
a standard text on numerical analysis (for example [4, 5]) for additional
discussion.

We assume a grid has been introduced, with discrete points separated
by a spacing h. The function whose derivative we want is given at the grid
points, which are labeled by an index i:

f(x)→ fi .

To approximate the derivative we recall its definition,

df(x)

dx
≡ lim

h→0

f(x+ h)− f(x)

h
. (5)

This suggests that if h is small but not zero, then we can take

df(x)

dx
≈ f(x+ h)− f(x)

h
, (6)

with the approximation (apparently) getting better as we make h smaller
and smaller.4 In the grid notation we would write

f ′i ≈
fi+1 − fi

h
. (7)

4On a computer, where real numbers are represented in a discrete fashion, problems
will arise if h is made too small. The precise nature of the problem will depend on how
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In fact, we could just as well take the difference “to the left,” namely

f ′i ≈
fi − fi−1

h
. (8)

There is no reason to expect this to be a worse approximation than the
original “right” derivative.5 A better approximation than either might be
the average of the left and right derivatives. So we could choose instead

f ′i ≈
1

2

[
fi+1 − fi

h
+
fi − fi−1

h

]
=

fi+1 − fi−1
2h

, (9)

which has a pleasingly symmetric character. It is also more accurate than the
others – the error introduced is of order h2, compared to order h for either
of the “asymmetric” differences.

To see why this is so, imagine that we know the function f(x) and Taylor
expand it about the point x:

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +O(h3) . (10)

We can solve this for f ′(x),

f ′(x) =
f(x+ h)− f(x)

h
+O(h) , (11)

showing that the approximation (7) above is accurate to O(h). A similar
analysis shows the same result for expression (8), of course – we simply
Taylor expand in the other direction. However, eq. (10) also implies

f(x+ h)− f(x− h) = 2hf ′(x) +O(h3) (12)

we use eq. (6) and a detailed discussion of these issues would take us too far afield.
For the moment just keep in mind that h cannot be made too small in practice. This
limits the accuracy of our approximate derivatives, although more sophisticated schemes
for calculating approximate derivatives can help fix this problem.

5Mathematically the two are identical in the limit h → 0. Indeed, this requirement is
part of what defines a function that can be differentiated at the point x. This is actually
the source of the freedom we have in defining approximate derivatives: the only real
requirement is that they reduce to the correct thing in the limit h→ 0. Anything that has
this property will be an approximation to the derivative. However, some approximations
are faster or more accurate, hence the extensive discussion of the issue in the literature.
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(the O(h2) terms cancel in the sum), so that

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) . (13)

Hence the symmetric approximation to the derivative is indeed more accurate
for a fixed value of h.

Eq. (10) further implies that

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +O(h4) . (14)

This immediately gives an approximation to the second derivative,

f ′′(x) =
f(x+ h) + f(x− h)− 2f(x)

h2
+O(h2) , (15)

or, in discrete notation,

f ′′i ≈
fi+1 + fi−1 − 2fi

h2
. (16)

This is one of many possible approximations to the second derivative, chosen
here for its simplicity.

Let us also expand the discussion of boundary conditions a bit. As men-
tioned above, for points on the edge of the physical domain there are neigh-
bors missing, and hence additional information is required in order to update
their displacements. To resolve this we can imagine that there are neighbors
and impose some (boundary) conditions that determine the new neighbors’
displacements. Specifically, we could:

1. Specify that the missing neighbors are points with some given dis-
placements. For example, we could specify that these points have zero
displacement for all times; in the wave example this would indicated a
boundary like a drumhead, where the medium is fixed. In the usual lan-
guage of partial differential equations this would correspond to Dirichlet
boundary conditions.

2. Specify that the normal derivative at the boundary has some prescribed
value. To see how this solves the problem, consider the left-hand edge
of the domain, consisting of points with i = 1. We imagine there is a
mass with i = 0 so that the i = 1 mass does have a left neighbor and can
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be updated. The problem is then how to determine the displacement
of the i = 0 mass. Using the right derivative we have

f ′0 ≈
f1 − f0
h

(17)

which can be solved for f0:

f0 ≈ f1 − hf ′0 . (18)

So if we fix f ′0 to some value then we can use this to determine f0. The
net result is again that the boundary condition fixes the values of the
edge points. A precisely similar analysis can be used for the right hand
end, of course. In the usual language of partial differential equations
this would correspond to Neumann boundary conditions.

3. Use any convenient mixture of Dirichlet and Neumann conditions at
one or both ends, provided all edge points are ultimately accounted
for.

4 Introduction to MPI

4.1 History

As noted above, MPI is a library of functions (subroutines in Fortran) that
can be called from a C, C++ or Fortran program to enable communication
between processors [1]. It is actually defined in a language-independent way,
so that in theory it may be implemented for any high-level language. In
practice implementations exist for C, C++, Fortran 90 and Java. MPI ver-
sion 1.2 includes the basic functionality and is fully implemented on many
systems. MPI 2 includes many new features, e.g. parallel I/O and the ability
to start and stop processes while the program is running, but it has yet to
be fully implemented on many systems. (Subsets of it do commonly exist.)
Since the availability of MPI 2 functionality is evolving, in this module we
concentrate on the basics as realized in MPI 1.2.

4.2 Basic Concepts

The quickest way to become acquainted with MPI is to examine some simple
programs. We can use these to highlight the basic structures and procedures
that MPI uses.
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Here is our first MPI program, written in C:

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[]) {

int rank, size;

MPI_Init (&argv, &argc);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf("Hello from processor %d of %d\n", rank, size);

MPI Finalize ();

return 0;

}

You might want to pause a moment and see if you can guess what this
program will do before reading further.

The most important thing to keep in mind at the outset is this: this
code gets executed exactly as written on every processor. So each line of the
above program is executed separately on however many processors we start
it running. Remember also that MPI assumes a distributed memory model
– each processor has its own local memory. Thus each variable is declared
separately by every processor and exists locally for that processor. Processors
can modify their own copies without affecting the local variables of any other
processors. In the present example, integer variables rank and size exists
on each processor. (There is also an int argc and an array of pointers to
char argv but we will not use these for the moment.)

With this in mind, let us walk through the above code. Note that there
is an MPI header file, mpi.h, that must be included in any source file that
uses MPI. The function MPI Init is an initialization routine; it sets up the
MPI environment and passes the values of argc and argv, if present, to all
processors. This must always be the first MPI routine that is called by your
program.

Next comes a function MPI Comm rank. This takes two arguments, an MPI
“communicator” and a pointer to an int. More on communicators below; for
the moment just note that this routine returns the “rank” of the processor.
The rank is an integer running from 0 to n− 1, where n is the total number
of processors, and is assigned by the system at run time. You can think of
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the rank as a unique ID number for processors. It is used often in MPI, e.g.
to identify the source and destination processors for messages. Thus you will
usually want to call this function early on in your MPI program.

In the present example each processor calls the routine, and each receives
a value which is stored in the variable rank. Remember that these are all
local variables: if there are 8 processors, there are 8 copies of rank, each (after
the call) with a different integer value from 0 to 7. Note that in general you
do not have any control over what actual CPU gets assigned any particular
rank; this is decided by the system at run time.

By the way, we can now answer a question that may have been bothering
you: If each processor executes the same code, how they can ever do anything
different? The answer is that they can branch on the value of rank. As a
crude example, you could do something like:

if (rank == 0) {

... do something ...

}

if (rank == 1) {

... do something else ...

}

...

Now, what is an “MPI communicator”? Basically it is a group of proces-
sors that can communicate with each other. Whenever you send or receive a
message, it will be within a particular communicator, which is required as an
argument of all send/receive functions. The call to MPI Init automatically
defines a default communicator called MPI COMM WORLD, which includes all
the processors that are running. In many cases this is all you need, though
MPI does allow you to define new communicators, i.e., subsets of processors
that can only communicate among themselves.6

Next comes a function MPI Comm size, which again takes an MPI com-
municator and returns an integer. This function returns the total number of

6You might do this as a security measure, to help ensure that messages are being passed
correctly. Technically the processor rank is defined relative to a particular communicator,
or processor group; this is why the call to MPI Comm rank included the communicator as an
argument. If we were to define another communicator then at least some of our processes
would belong to two communicators, the new one plus MPI COMM WORLD. In this case each
processor could, and generally would, have a different rank ID in each communicator.
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processors in the communicator. If MPI COMM WORLD is supplied then this is
the total number of processors. Each processor receives the same value from
the function, but it is stored in a local copy of the variable size.

Next comes a standard C printf statement, which prints out the values
of rank and size. Remember that each processor executes this statement,
so if there are n processors then there will be n lines of output printed. Each
contains the same text but the local values of rank and size are used. Of
course, each processor has the same value of size.

If run on 4 processors, say, the output produced by the code might look
something like this:

Hello from processor 1 of 4

Hello from processor 3 of 4

Hello from processor 0 of 4

Hello from processor 2 of 4

(Remember that ranks run from 0 to n−1!) An important feature to note is
that there is generally no synchronization between processors. The output can
appear in any order, and if the code is run several times then in general the
output order will vary. The lesson here is that you should never assume that
processors are synchronized in any way, unless you insure it with suitable
code. MPI provides a number of functions for synchronizing processors,
though we will not use them here.

The final act is a call to MPI Finalize, which cleans up MPI and should
be the last MPI routine called by your code.

4.3 Some Technical Points

In C, MPI uses a number of internally-defined data structures, e.g. com-
municators, data types, etc. MPI provides “handles,” or names that can be
used to refer to these. For example, there is a defined type called MPI Comm, a
communicator. If you wished to define a new communicator foo, you would
first declare it as

MPI_Comm foo;

All such types, along with objects like MPI COMM WORLD, are defined in the
header file mpi.h, which must be included in any MPI code. This file also
contains prototypes for all MPI routines.
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MPI functions conform to a standard presentation. In C, a function name
has the format

MPI_Xxxxxx (...)

and returns an int indicating whether the function executed normally or not.
As usual in C, this return value can be ignored, as we have done in the above
sample code. Less slipshod programmers would use, e.g.,

err = MPI_Comm_rank (...);

and test the value of err to see if anything went wrong. If err is 0 then the
function executed normally; if non-zero there was some error.

In Fortran, subroutines have an extra argument of type INTEGER which
holds the return value.

4.4 Exercises

1. Compile and run the sample program from this section. This will likely
involve a number of steps that are specific to your local computing
environment, and it is essential that these basics be sorted out before
proceeding further. Run the code several times with various numbers
of processors and observe the results.

2. Modify the sample code so that only the processor whose rank is half
the total number of processors actually prints the greeting. If the total
number of processors is odd, then only the processor with the largest
rank should print.

4.5 Sending Messages

Now let’s send some messages. In MPI, a message consists of an array of
elements of some type. The array can be of any length including one, cor-
responding to a single data item. The possible data types include all the
basic types present in C or Fortran; in addition, user-defined types may be
constructed and sent. Thus if your code uses, say, a struct to hold the Carte-
sian coordinates (x, y, z) of a point, you could define an MPI datatype that
matches this and then send these structs directly in messages, rather than in-
dividual x, y and z values. We will not need this facility for the basic projects
in this module, but it will come in handy for more advanced applications.
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Now, when you call a function to send a message, you will specify the
number of items to be sent and their type. MPI provides its own “handles,”
or names, for the basic types, that you use in the message passing functions.
Thus, for example,

float x[10];

...

MPI_Send (..., 10, MPI_FLOAT, ...);

shows schematically how 10 float values in an array could be sent. The
MPI FLOAT is the MPI handle that indicates a float.

The most basic type of message passing is “point-to-point” communica-
tion. This is communication between two processors, one of which sends the
message and the other receives. All such communication happens within a
communicator, with the processor ranks identifying the source and destina-
tion of the message.

This may be contrasted with “collective” communication, which involves
a group of processors. For example, we could send some data from one pro-
cessor to all the others, or gather data from all processors onto one processor.
Of course we could perform these tasks using point-to-point communications,
but MPI provides collective routines that save coding and make errors less
likely. We shall discuss these in more detail later.

In point-to-point communication one processor sends and the other re-
ceives. There are a variety of different send routines available in MPI, but
for now we will use the “standard” one. Its C signature is

int MPI_Send (void *buf, int count, MPI_Datatype type, \

int dest, int tag, MPI_Comm comm)

Let us examine the arguments in turn.
The first argument, buf, is a pointer to the beginning of the data to

be sent. In other words it is the memory address where the message data
starts. If we were sending the contents of an array x[] then for buf we
could use &x[0]. Alternatively, since in C the name of an array is in most
cases equivalent to a pointer to its first element, we could simply use x. The
argument count specifies the number of data items to be sent, and type

indicates their type. Note that type is a specially defined MPI type; here we
would use, e.g., MPI FLOAT for floats, etc.

So which data are actually sent? Answer: the first count consecutive
items in memory starting at the address buf. So we will need to be aware of
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how our data are laid out in the computer memory. Fortunately, languages
have rules about this. Both C and Fortran guarantee that for one- and
two-dimensional arrays (declared statically), the consecutive elements will
be stored in consecutive memory locations. So if we wanted to send the
first 10 elements of a 1d array of ints x[], we would specify x for buf, 10
for count, and MPI INTEGER for type. The function would then go to the
address specified by x, which is the address of the first element of the array,
and send the contents of the next 10 int-sized chunks of memory. Since the
array elements are stored consecutively, this does just what we want.

Note that MPI assumes you know what you are doing! If you start in the
wrong place, or run off the end of an array, for example by making count

too large, MPI will happily gather up whatever bytes it finds and send them
along. In general these bytes may contain anything at all, including data not
interpretable as numbers or even random garbage. No error messages are
generated; the only sign you may have of this type of error is downstream,
when the corrupted data are used somewhere else.

It remains to specify how the elements of two-dimensional arrays are
organized. In C, elements are stored in “row major” order, which means
that if we regard the array as a 2d matrix, then reading along the rows steps
us through consecutive memory locations. That is, we start with the (0,0)
element, then (0,1), (0,2), . . . , through the end of the first row, then (1,0),
(1,1), (1,2), . . . , and so on. Note that this assumes you have declared the
array statically, as, e.g.,

float x[10][10];

If you have instead declared a pointer to pointer to float, and dynamically
allocated storage for the individual rows, then these rows are not necessarily
adjacent in memory. If you are doing this, however, then you presumably
understand how the data are laid out in memory and you should be able to
make the necessary adjustments!

In Fortran array elements are stored in “column major” order, so that
reading along columns steps us through consecutive memory locations. Thus
(1,1), (2,1), (3,1), . . . , (1,2), (2,2), (3,2), . . . , etc.

Next, rank is the rank of the destination processor, i.e., where the message
should be sent. tag is just a numeric ID that can be attached to a message,
which for example could be checked at the destination to make sure the
correct message was received. Finally, comm is the MPI communicator within
which the communication occurs. Often this is just MPI COMM WORLD.
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So a complete call to MPI Send might look like

float data[500];

...

MPI_Send (data, 100, MPI_REAL, 3, 123, MPI_COMM_WORLD);

This would send the first 100 elements of the array data to processor 3, with
an ID tag of 123. The call

MPI_Send (&data[100], 100, MPI_REAL, 3, 123, MPI_COMM_WORLD);

would instead send 100 items starting from data[100], that is, elements 100
to 199 of the array.

Remember that MPI Send also returns an integer status code, which we
are here ignoring.

Now, say we call MPI Send in this way, and it returns. What has actually
happened at that point? All that is guaranteed is that it is safe to overwrite
the sent data without affecting the message. It is not known whether the
message has been received at its destination, or even if it has actually been
sent (the data may have been copied to a local system buffer and may be
waiting to be sent on from there). MPI Send is free to do either of these,
and different MPI implementations can and will differ in their behavior.
If you definitely need or want one of these behaviors then MPI provides
additional sending routines that are specific in their criteria for completion.
For example, the “synchronous send” routine, MPI Ssend, definitely does not
return until the message has actually reached its destination. The “buffered
send,” MPI Bsend, returns after the data have been copied to a buffer –
faster than the other sends, but more work to set up, since the user (you)
has to create the buffers and tell MPI about them. We will not discuss
all the possibilities in detail here; check the MPI documentation if you are
interested.

One aspect of the ambiguity in MPI Send is that certain bugs can manifest
themselves differently on different systems. For example, say we send a
message but, due to a bug, it is never received at its destination. (This
could happen if the destination processor fails to do the necessary thing to
receive the message; more on this in a moment.) On systems where MPI Send

is synchronous, i.e., it waits for receipt before returning, then the sending
processor will hang. If it buffers, however, then the sending processor will
proceed on its way, and the only indication of the bug may be garbled or
useless results.
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As an aside, in MPI parlance we have been discussing the “completion
criteria” for the various send modes, that is, what has happened when the
routine is “complete.” All of the routines mentioned so far are “blocking,”
meaning the routine does not return until the completion criterion (receipt at
destination, or copied to a buffer, or whatever) has been satisfied. For each of
these send modes there is also a corresponding “non-blocking” version, which
returns immediately but with no implication that the send is complete. You
would then later test to see if the routine had completed, or else wait for it
to complete.

Thus, for example, an ordinary (blocking) synchronous send sits and does
not return until the message has been received at its destination (its com-
pletion criterion is met). This can be inefficient, however, since the sender
accomplishes nothing useful while waiting. A non-blocking synchronous send,
on the other hand, returns immediately. The sending processor can then do
something else useful (one hopes!); later it can check whether the send is
complete. If so, its completion criterion has been satisfied, in this case in-
dicating that the message has been received. This allows you to maximize
efficiency, by minimizing the time that processors are idle. Again, the MPI
documentation can orient you on these advanced techniques.

Fortunately, receiving a message is relatively simple! There is one routine,
with prototype

int MPI_Recv (void *buf, int count, MPI_Datatype type, \

int source, int tag, MPI_Comm comm, \

MPI_Status *stat)

Incoming data are placed in consecutive memory locations starting at buf.
In this case count is actually the maximum number of data items to be
received. You can send fewer without fear, but if you send more than count

items the behavior is undefined. Expect the worst! source is the rank of
the sending processor, and type, tag and comm are the same as for a send.
Note that the tags must match between sender an d receiver for the message
to get through. In addition, the communicators must match, and the source
and destination ranks must be valid. Finally, there is a special status struct
that will contain some details concerning the message. We’ll discuss these in
a moment.

The completion criterion for a receive is simple: the received data are
ready for use. This means that the routine returns when the message has
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arrived.7

Here is a sample program that sends a simple message from processor 1
to processor 0:

#include <stdio.h>

#include <mpi.h>

void main (int argc, char *argv[]) {

int rank, i;

float foo[100], bar[200];

MPI_Status stat;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 1) {

for (i=0; i<100; i++)

foo[i] = i;

MPI_Send (foo,100,MPI_FLOAT,0,42,MPI_COMM_WORLD);

}

else if (rank == 0) {

MPI_Recv (bar,200,MPI_FLOAT,1,42,MPI_COMM_WORLD,&stat);

printf("Processor %d, received data\n", rank);

printf("Check: bar[10] = %f\n", bar[10]);

}

MPI_Finalize ();

}

Study this example carefully! Remember that the same code is executed on
each processor. So each has a copy of the arrays foo and bar, as well as the
two ints and stat. We begin by initializing MPI and determining our ranks.
Then, if we are processor 1 we first fill up the array foo with data (just to
have something to send), and send all 100 elements to processor 0. The tag
is 42.

If we are not processor 1, however, we skip this branch and proceed. If we
are processor 0 then we take the next branch, with a call to MPI Recv. We

7There is also a non-blocking receive, which returns immediately. The receiving pro-
cessor could then do some useful work, rather than waiting, and come back later to check
if the receive is complete. When it is, the received data are ready for use.
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allow up to 200 incoming floats, and store the data in the array bar (starting
at its beginning). Status information is placed in stat. Processor 0 then
prints a couple of lines of output, which includes one of the received data
values as a check. The output would look like this:

Processor 0 received data

bar[10] = 10.00000

If we are neither processor 0 nor 1, we skip over everything and wait at
MPI Finalize for the others to finish.

As a simplifying feature, the receiving processor may use certain wild-
cards. To avoid having to specify the sending processor, use MPI ANY SOURCE

in place of the source rank. To receive with any tag use MPI ANY TAG in
place of the tag. In this case the actual source of the received message and
the actual tag are stored in the status struct. You would access these as
stat.MPI SOURCE and stat.MPI TAG, respectively. Thus the sample pro-
gram above could be written:

#include <stdio.h>

#include <mpi.h>

void main (int argc, char *argv[]) {

int rank, i;

float foo[100], bar[200];

MPI_Status stat;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 1) {

for (i=0; i<100; i++)

foo[i] = i;

MPI_Send (foo,100,MPI_FLOAT,0,42,MPI_COMM_WORLD);

}

else if (rank == 0) {

MPI_Recv (bar,200,MPI_FLOAT,MPI_ANY_SOURCE,\

MPI_ANY_TAG,MPI_COMM_WORLD,&stat);

printf("P %d, received data from P %d\n", \

rank, stat.MPI_SOURCE);

printf("The tag was %d\n", stat.MPI_TAG);

27



printf("Check: bar[10] = %f\n", bar[10]);

}

MPI_Finalize ();

}

In this case the output would be

P 0 received data from P 1

The tag was 42

bar[10] = 10.00000

The status struct also contains the number of data items actually received.
This is accessed using a function MPI Get count; see the MPI documentation
for further details.

4.6 Exercises

1. Rewrite the sample program in this section so that a message is sent
from processor 1 to processor 2. The message should be an array of
50 integers with any values you choose. Processor 2 should receive the
message with both source and tag wildcarded. Processor 2 should then
print the source, the tag, and one of the array elements received.

2. Write a program in which messages are exchanged between processor
0 and processor 2. Processor 0 should calculate the squares of the
first 200 integers, then transfer this array (of integers) to processor 2.
Processor 2 should then divide all even values in the array by 42.0, and
send the resulting (real) array back to processor 0. Output whatever
you feel is necessary to confirm that the data were transferred correctly.
Do not use source and tag wildcarding!

3. Write a program that will run on four processors. P3 will receive mes-
sages from all the others, with the source rank wildcarded. Each other
processor should send a different integer to P3 (your choice). When P3
receives the value from P0, it should print the square of that integer
value. When P3 receives a value from P1, it prints 2 to the integer
power passed. Finally, when P3 receives an integer from P2, it prints
the sum of all integers up to and including the sent value.
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4.7 Advanced Topic: Derived Datatypes

MPI provides a way of building new, more complicated, data types from
existing ones. Thus we could for example define new types corresponding to
sub-arrays, like columns (for C) or rows (for Fortran) where the data elements
are not adjacent in memory, or types corresponding to C structs or Fortran
common blocks. Derived types may be constructed from the basic types and
from other derived types, so complicated hierarchies can be developed. We
can then use these types in sends and receives to pass the entire data object
at once. The obvious alternative, sending such data by means of repeated
individual sends, is slow, clumsy and error prone.

The basic procedure consists of first constructing the new datatype and
then committing it. After it has been committed it is available for use.

There are several “types” of derived datatype, corresponding to how the
new type is specified. We shall here focus on the “vector” datatype, which is
useful for data that is non-adjacent but distributed in a homogeneous pattern
in memory. The function that constructs this datatype is

MPI_Type_vector (int count, int blocklength, int stride, \

MPI_Datatype oldtype, MPI_Datatype *newtype)

newtype is the newly constructed type; it is built out of items of type
oldtype. The new type consists of a set of blocks, each with blocklength

contiguous items of type oldtype. stride is the number of old data items
from the beginning of one block to the beginning of the next block.

This is easiest to understand with a specific example. Fig. 6 shows a set
of contiguous memory locations, each the size of an oldtype. (Thus, e.g., if
oldtype is float, then in most cases the size of each element (rectangle) is
4 bytes.) We wish to define a datatype that consists of the shaded items. In
this case we have 2 blocks, each of which has 3 items of type oldtype. So
count is 2 and blocklength is 3. stride in this case would be 5; that is,
the number of old data items from the start of one block to the beginning of
the next.

To commit the new datatype, we call

MPI_Type_commit (MPI_Datatype *newtype)

After this the new type is ready for use.
Here is a C program that defines a type corresponding to a column of a

2d array (regarded as a matrix):
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oldtype

blocksize = 3

stride = 5

Figure 6: Derived datatype example. The shaded blocks represent oldtyype
data items to be included in the new type.

#include <stdio.h>

#include <mpi.h>

#define NCOLS 8

#define NROWS 4

int main (int argc, char *argv[]) {

int myrank, i, j;

double x[NROWS][NCOLS];

MPI_Status stat;

MPI_Datatype coltype;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &myrank);

MPI_Type_vector (NROWS, 1, NCOLS, MPI_DOUBLE, &coltype);

MPI_Type_commit (&coltype);

/* Now test by sending some data: */

if (myrank == 2) {

for (i=0; i<NROWS; i++)

for (j=0; j<NCOLS; j++)

x[i][j] = i*10.0 + j;

MPI_Send (&x[0][6],1,coltype,0,42,MPI_COMM_WORLD,&status);
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}

else if (myrank == 0) {

MPI_Recv (&x[0][3],1,coltype,2,42,MPI_COMM_WORLD,&status);

for (i=0; i<NROWS; i++)

printf("P%d: x[%d][3] = %lf\n", myrank, i, x[i][3]);

}

MPI_Finalize ();

return 0;

}

This example will also repay careful study. Note that the coltype contains
a total number of elements equal to the number of rows in the matrix; each
block is a single element; and the stride between elements is equal to the
number of columns. This is true for the elements that comprise any column
of the matrix, so the new datatype can be used quite generally.

To test the type we have filled up the array x on processor 2 with data
indicating the row and column. We then send the seventh column of x to
processor 0. Note that as usual the first argument to MPI Send is the starting
address of the data to be sent, in this case the address of the top element of
the column. Likewise, the receiving processor can place the incoming column
anywhere it likes; in the example at hand, the incoming data becomes the
fourth column of x on processor 0. Note that it is perfectly legal to set
the starting address of the outgoing or incoming data to be anything; in this
case the data will be taken or written according to the datatype specification,
leading most likely to meaningless results. MPI assumes you know what you
are doing!

The final act is for processor 0 to print its fourth column, to confirm that
the data was transferred correctly. The output of the code is

P0: x[0][3] = 6.000000

P0: x[1][3] = 16.000000

P0: x[2][3] = 106.000000

P0: x[3][3] = 1006.000000

as expected.
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5 Projects

5.1 Coupled Oscillator Chain

Consider a one-dimensional chain of N particles, each with mass m. The
particles are connected by identical springs with spring constant k and have
the same undisturbed (equilibrium) separation a. Let us denote the displace-
ment from the equilibrium position of the ith mass by xi, with i = 1, . . . , N .
Thus xi = 0 for all i in equilibrium.

The particles are allowed only to move along the direction of their separa-
tion; we thus describe longitudinal oscillations of the system. The equation
of motion for the ith mass is then

m
d2xi
dt2

= −k(xi − xi+1)− k(xi − xi−1)

= −k(2xi − xi+1 − xi−1) , (19)

or
d2xi
dt2

= −ω2(2xi − xi+1 − xi−1) (20)

where ω ≡
√
k/m. Our goal is to solve this set of equations approximately.

Of course we must specify the initial displacement and velocity for each mass,
say at t = 0. Notice that the system has the property that the behavior of
each mass depends on its own displacement and those of its nearest neighbors.
Indeed, the right hand side of eq. (20) has the same structure as the discrete
wave equation in one dimension, so we can also think of this as a describing
transverse waves on a string, for example.

Now imagine that we know all the displacements and velocities at some
time t. How would we calculate the displacements and velocities at a slightly
later time t + ε? First recall that a second order differential equation can
always be rewritten as a pair of first order equations. In the case at hand we
can introduce the velocity of the ith mass and write eq. (20) as

dxi
dt

= vi (21)

dvi
dt

= ai , (22)

where
ai = −ω2(2xi − xi+1 − xi−1) . (23)
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Now, if the time step ε is small, then the derivatives can be approximated
by differences, “unpacking” the definition of the derivative as before. In the
most straightforward approach, eq. (22) is approximated as

vi(t+ ε)− vi(t)
ε

= ai(t) , (24)

which gives
vi(t+ ε) = vi(t) + εai(t) . (25)

Thus given the displacements xi, xi−1 and xi+1 at any time, we can calculate
the acceleration ai(t) (using eq. 23)) and then the velocity a short time later
from eq. (25).

We can do the same thing to update the position, of course. Eq. (21)
can be approximated for small ε as

xi(t+ ε) = xi(t) + εvi(t) . (26)

Since we know vi(t) we can calculate xi(t+ ε). So the final result is thus that
given xi(t) and vi(t) we can determine xi(t+ ε) and vi(t+ ε) using the above
procedure. These new values can then be taken as the starting values for the
next step, of course, so the process can be iterated to give the (approximate)
solution at any later time.

Clearly, to get accurate results we must take ε to be “small,” but how
small is “small”? The smaller the better, it seems, but we would really like
to keep ε as large as we can get away with. One reason is that the smaller we
make ε, the more time steps are required to get to the actual time of interest.
More time steps means we have to wait longer for the answer.8

Now, the simple difference approximation we introduced above is actually
rather inaccurate; that is, a fairly small ε is required, leading to more overall
work, than is the case with other schemes. But as previously discussed,
there is a great deal of freedom in how we approximate our derivatives.
Let us pursue a simple modification to our approach that yields much more
accurate results with almost no extra work [7].

8Other considerations come into play here as well, for example the “roundoff” error
associated with computer arithmetic on real numbers and its potential interaction with
the specific algorithm used to approximate the differential equations of interest. This is a
long and technical story, and the interested reader is invited to consult a text on numerical
analysis for further details [6].
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Eq. (26) computes the change in xi over the interval t to t + ε using
the velocity at the beginning of the interval, but in general, of course, the
velocity changes during the interval. If ε is small enough, then this change
in vi is also small and the approximation may be reasonable, but we can do
better by using the velocity at some point during the interval to compute the
change in xi. The simplest choice is to use the velocity in the middle of the
interval, and this is what we shall do. Hence we take

xi(t+ ε) = xi(t) + εvi(t+ ε/2) (27)

as the formula for updating xi. How do we get vi(t + ε/2)? Well, the same
remarks apply to the velocity: eq. (25) updates vi using the acceleration
at the beginning of a time step, but a better approach would be to use the
acceleration at the middle of the step. But what if we had vi(t − ε/2), say,
and were stepping to vi(t + ε/2)? The middle of this step would be at time
t, so

vi(t+ ε/2) = vi(t− ε/2) + εai(t) . (28)

But this works well for us, since ai(t) depends on the displacements (see eq.
(23)), which are themselves known at time t. So the upshot is that we can
use eqs. (27) and (28) to evolve the system, with the displacements and
velocities “leapfrogging” each other as we proceed.

One problem remains: how do we get the whole thing started? Our
initial conditions are given as xi(0) and vi(0), but we need vi(ε/2) to begin
the process. Here we can simply use

vi(ε/2) = vi(0) + (ε/2)ai(0) (29)

to set the needed velocities.
So the final algorithm for solving the set of difference equations of motion

eqs. (28) and (27), is as follows. We specify some initial displacements
xi(0) and velocities vi(0) at t = 0. We obtain vi(ε/2) from eq. (29). Then,
assuming we know xi(t) and vi(t+ ε/2) for some t we can update them by:

1. using eq. (27) to calculate the new displacements xi(t+ ε), and then

2. using eq. (28) to compute the new velocities vi(t+ 3ε/2).

We can iterate this for as long as we wish, with the results of each step
becoming the initial values for the next step.
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The only unresolved issue is what happens at the ends of the chain –
the end masses i = 1 and i = N have no neighbors to the left and right,
respectively. Of course, we still have to specify some boundary conditions for
the system. For now let us imagine that these end masses are connected by
the same sort of springs to walls that cannot move. We can accomplish this
by imagining that there are neighboring “masses” with x0(t) = xN+1(t) = 0
and v0(t) = vN+1(t) = 0 for all times. Later we can, e.g., introduce driving
forces at one or both ends; this will amount to specifying the motion of the
fake masses at i = 0 and/or i = N + 1.9

5.2 Exercises

1. To familiarize yourself with the equations of motion, write a serial
(single-processor) code to simulate N coupled masses using the above
algorithm. It is convenient to define m = 1 – it appears only in combi-
nation with k so there is no need for two variable values.

2. Run the code for N = 2. Choose k around 1 for simplicity and experi-
ment with different time steps ε. One way to determine useful values of
ε is to reduce ε until the solution does not change within some desired
tolerance. For example, say we wish to calculate the mass displace-
ments at t = 10, to a relative accuracy of 10−4. We could evolve the
system from t = 0 to t = 10 with decreasing values of ε, until the
relative difference between the solution from one run to the next is less
than 10−4. Of course, if ε becomes too small then the increasing number
of steps required will make roundoff error more and more important.
Compare the “naive” (Euler) method we discussed above to the more
sophisticated leapfrog (midpoint) method.

Use gnuplot or another visualization tool to examine the oscillations
of the chain. (It is easiest to make 2d plots showing the displacement
of one mass versus time.)

3. In this case there are two normal modes of oscillation, with frequencies
ω1 =

√
3k/m and ω2 =

√
k/m. Guess, or derive for yourself (or consult

a mechanics textbook [8] to find) the displacements for the two normal

9If we wished to make the ends completely free, i.e., have the end masses connected to
nothing, we could simply rewrite the equations of motion for these so that they only have
forces arising from the single neighbor.
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modes. Set up initial conditions that match these displacements and
check that the system executes simple harmonic motion. Determine
the frequency from the simulation and check that it agrees with the
exact formula.

4. Compare your numerical results with the exact solution for one or both
of the normal modes and use this to further refine your value for ε.

5. Modify the code to calculate the total energy of the system (kinetic
plus potential for each particle) at each time step. Is the energy ap-
proximately constant in time?

6. Modify the code so that there is a sinusoidal driving force at the left
end; i.e., give the fake mass i = 0 a motion

x0(t) = A sin ω̃t (30)

Start the system with xi = vi = 0 and examine the maximum steady-
state displacement of either mass over time. Observe that as ω̃ ap-
proaches one of the normal mode frequencies, the maximum steady-
state displacement becomes large. Use this method of driving the sys-
tem at a variable frequency to determine the normal mode frequencies
and compare to the exact values.

7. The exact result for the normal mode frequencies with N masses is

ω2
n =

4k

m
sin2

(
nπ

2(N + 1)

)
,

where n is the mode number. Use the driving technique to determine
several normal mode frequencies for N = 10 and confirm this result.

8. Run the simulation for a large (N = 100 or more) chain initially in
equilibrium, but with the sinusoidal driving force. The disturbance
created by the driving force will propagate down the chain; determine
its (approximate) speed. Decide qualitatively how this propagation
speed should depend on ω and confirm that this is the case. Does the
propagation speed depend on ω̃? If so, why?
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5.3 Parallel Simulation

Once the use and meaning of he equations of motion are clear and you are
getting reasonable results from the serial code, we can move on to an MPI
version that runs on multiple processors for possibly large values of N . Let
us first discuss the general structure of the parallel application.

The most natural way of dividing the problem up is to split the chain
into pieces, assigning a subset of masses to each available processor. As in
our earlier discussion, every mass in a subdomain except for the end masses
can be updated independently of the other subdomains – the equations of
motion relate the response of each mass to its own displacement and those
of its immediate neighbors. So each processor can update most of its masses
right away; only the two at the ends require information from neighboring
domains.

In more detail, let’s assume we have NT total masses and we will run on
M processors. Dividing the masses among the processors means each will
handle N = NT/M masses; let us agree that this will always be a whole
number, to keep things simple.10 Furthermore, let’s assert that processor 0
has the left-most group of N masses, processor 1 the next group, and so on.

Now, each processor will require two N -dimensional arrays to hold the
displacements and velocities of the masses for which it is responsible; let’s
call these x[] and v[]. Since each processor executes the same code, each
has its own (local) arrays with these names which can hold the displacements
and velocities for that processor’s subdomain.

Roughly speaking each iteration of the code will involve first sending and
receiving the edge values as needed, and then updating the positions and
velocities of all masses. The latter task is most easily accomplished, as in
your serial code, by a for loop over the masses. To avoid having to treat the
end masses separately, let us adopt the following trick: instead of having N -
dimensional arrays, let us make them N+2 dimensional. The added elements
will be used to hold the values for the neighbors of the end masses. Thus for
a given processor, the array elements x[1],..., x[N] are the displacements
of the masses assigned to that processor. The elements x[0] and x[N+1]

10Note that it would be a bad idea to give different numbers of masses to different
processors since this would result in a load imbalance – processors with fewer masses
would typically wind up waiting at the data exchange stage because other processors were
still updating their sub-domains. For many applications load balancing can be a significant
problem, but in this case we can easily arrange for perfect balance.
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are available to hold the displacements of the masses immediately to the left
and right of this subdomain, respectively. If one of these is a fixed end then
x[0] or x[N+1] will just be zero, as appropriate, and unchanging. If not,
then values received from neighboring processors via message passing will
be stored there in the first (message passing) step of the algorithm. In the
next step, a single loop updating elements 1 to N (just as in the serial code)
then takes care of all of this processor’s masses and we are ready for the next
iteration.

5.4 Exercises

1. Now for the real problem! Write a parallel version of the chain solver
to run on some convenient number of processors. (It is helpful if this
number is not hard-wired into the code, so that it can be changed
easily. To this end, recall that you can find out how many processors
there are from within the code (while it is running) with a call to
MPI Comm size.) Leave the driving force in place at the left hand edge.

(Note that visualization will be an extremely useful debugging tool.
Since the serial code was already working, the likeliest source of bugs is
(surely!) the message passing. In many cases such errors will be man-
ifested as odd behavior at the boundaries of the subdomains. Visual-
izing your solution as a disturbance propagates past such a boundary
will quickly reveal whether the message passing is working correctly or
not.)

2. Once you are convinced that your MPI code is working properly, mea-
sure the speedup relative to the serial code for a fixed problem size.
How much of the theoretical speedup (factor of M for M processors)
do you obtain? If possible, increase the number of processors to the
point where the performance actually gets worse than that of the serial
code. Why does this happen?

For code timing, you can use

MPI_Wtime ()

This function takes no arguments and returns a double, the value of
the system clock. To time a section of code, call it before and after and
take the difference; this is the elapsed time:
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double start, end;

...

start = MPI_Wtime ();

<... stuff to be timed ...>

end = MPI_Wtime ();

printf("Elapsed time: %lf\n", end-start);

If you do this on every processor then each will print its elapsed time,
of course. This is a useful way of identifying load imbalances.

5.5 The Two Dimensional Case

A natural extension of the above program is to two space dimensions, i.e. a
plane “mattress” of masses connected by springs, oscillating in the direction
normal to the plane. The equations of motion for this case are the same as
for the discrete wave equation, eq. (3).

Renaming Dij → xij and introducing the velocities vij we have the kine-
matical equations for the “leapfrog” method,

xij(t+ ε) = xij(t) + εvij(t+ ε/2) (31)

vij(t+ ε/2) = vij(t− ε/2) + εaij(t) , (32)

with the acceleration

aij = ω2 [xi+1,j + xi−1,j + xi,j+1 + xi,j−1 − 4xij] . (33)

There are now options for decomposing the domain. We could divide it
into strips that cross the entire plane in either direction, or “checkerboard.”
In either case the message passing becomes more involved, because each
processor must now send strips of edge values, not just single values, to its
neighbors.

As the simplest approach, let’s divide the domain into strips that run
horizontally (for C) or vertically (for Fortran). That is, in C the strips should
cover the entire domain from left to right; they are then “stacked” vertically.
The reasons for these particular orientations will become clear shortly.

Now, each processor will need 2d arrays to hold the displacements and
velocities for its points. As before, let us give these arrays one extra row or
column on every side. For sides that represent physical boundaries of the
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system, these extra rows and columns can hold the fixed boundary values
(Dirichlet). For rows and columns on edges adjacent to another subdomain,
they serve to hold the neighboring processors’ edge values, which are sent
before the masses are updated.

To see the reason for partitioning the domain as described above, recall
that a basic MPI message consists of a number of data items that are adja-
cent in memory. In C, for example, the elements of a 2d array are stored in
row major order. So with the decomposition advocated above, where pro-
cessors need to send (edge) rows of their displacement matrices, the relevant
data are adjacent in memory and the message is easy to construct. (For
Fortran the situation is exactly reversed: columns of the array are adjacent
in memory, so columns are easy to send in MPI.) Sending a column in C,
by contrast, requires sending a group of numbers that are not adjacent in
memory (although they are evenly spaced, by a number of steps equal to the
number of columns in the array). This can certainly be done, but it is not
the easiest way to begin!

5.6 Exercises

1. Write a serial program to simulate the 2d case. Verify that the behavior
of your solution is reasonable. You should experiment with a variety
of boundary and initial conditions. Make sure you are able to visualize
the solution.

Regarding visualization, gnuplot can be used to make surface plots,
e.g., plots of the wave displacement plotted over the xy plane. You
may find if easiest to use contour plots – these are quick and show
quite clearly the general progression of a disturbance (wave). For basic
contour plotting try

gnuplot> set nosurface

gnuplot> set contour base

gnuplot> set view 0,0

gnuplot> splot ’data.file’

The first command turns off the surface that would be normally pro-
duced by splot, the second sets the contour plot to appear directly on
the xy plane, and the third sets the viewpoint to be directly above the
plane. The last command plots the data in data.file.
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To avoid having to specify for gnuplot the organization of your data,
make the grid square and have your code separate the displacements
for each row with a blank line. For a 2× 2 grid, for example, the data
file should look like this:

a

b

c

d

where a, b, c, d are some numbers. Unless instructed otherwise, gnuplot
assumes that data in this form – with N “blocks” separated by blank
lines, each of which has N numbers – represents data on a 2d uniform
grid, thus:

c d

a b

2. Write an MPI program to simulate the 2d problem, using the strip de-
composition discussed above. Specifying the initial state of the system
is up to you, but one possibility is to have a sinusoidal “source” or
driving mass located along one edge. You could then watch the wave
disturbance spread out from the source, reflecting off the walls, etc.
Multiple sources will allow examination of interference phenomena.

A way of visualizing the results will again be quite helpful here. Watch-
ing the disturbance pass over a domain boundary will be the quickest
way of discovering whether there is a problem with the message pass-
ing. The problem of combining the output from multiple processors
to show the entire plane is still a problem, though the concatenation
method discussed above will work for C.

3. (Advanced) Write an MPI code for the 2d case using decomposition in
the “unnatural” direction for your chosen language (i.e., for C decom-
pose into vertical strips).

4. (Advanced) Write an MPI code for the 2d case using a checkerboard
decomposition, that is, partitioning in both directions simultaneously.
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If you have completed the previous exercise, no fundamentally new
issues arise, though the details are more complicated. Be sure to think
carefully about how processors are assigned to domains; this determines
which processors are “neighbors.”

If you wish to explore more advanced features of MPI, look in the
documentation under “virtual topologies.” These allow you to define
a virtual grid of processors, each of which knows who its neighbors
are. This feature, along with the use of a derived datatype to send
non-adjacent strips of arrays, makes this advanced decomposition quite
tractable.

With a working checkerboard simulation, study whether checkerboard-
ing or strip decomposition is faster for your system. Can you estimate
the parameters Td and Tlat from eq. (4) above?
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