PARALLEL PROGRAMMING WITH MPI:
INSTRUCTOR NOTES*

David G. Robertson
Department of Physics and Astronomy
Otterbein College
Westerville, OH 43081

drobertson@otterbein.edu

January 1, 2008

Abstract

Some notes and suggestions for the exercises are presented. The
sample codes are briefly described. Please contact the author if you
have any comments or suggestions.

*Work supported by the National Science Foundation under grant CCLI DUE 0618252



1 Goals and Time Needed

This module introduces basic concepts of distributed memory parallel com-
puting in the context of simple physical systems. The emphasis is on the
basic ideas and techniques of parallel computing rather than the solution of
a sophisticated or timely scientific problem. The main problem considered
is the solution of the equations of motion for a set of coupled oscillators in
one and two dimensions, or equivalently, the wave equation in one and two
dimensions.
The principal goals of this module are

e to familiarize students with the basic ideas and techniques of parallel
computing;

e to introduce them to the MPI standard library for inter-processor com-
munication; and

e to have them use the basic MPI tools to write a parallel code for solving
the equations of motion for a coupled set of oscillators.

This last example may seem simple, but in fact it contains many of the
features that make parallel programming subtle and interesting.

My estimate is that about two weeks of class time, assuming 3-4 hours per
week in class and some work outside of it, should be sufficient for this module
at least through the 1d parallel project. With very well-prepared students the
2d case with simple decomposition (strips in the “natural” direction) can also
be completed in this time. More likely a third week will be needed for the 2d
case, especially if any of the advanced projects (checkerboard decomposition)
are attempted.

2 What You Will Need

It will be essential that the students are familiar with programming in a high
level language like C, C++ or Fortran. (Full MPI implementations exist for
these languages.) The notes are currently focused on C, in the expectation
that this is the more common choice. C++ can also be used with the C
MPT library, of course. Students using C will certainly need to be familiar
with at least the basics of pointers. They will also ideally have taken (or be
taking) an upper-level course in classical mechanics, though students with

2



only introductory physics should also be fine, especially if they have had
some exposure to differential equations.

You will of course need access to a parallel computing environment with
MPI. If you do not have a local “Beowulf cluster,” you may be able to access
such a system at a nearby regional or national supercomputing center. Many
such centers offer “classroom” accounts for teaching. Alternatively, a network
of workstations connected using ethernet can be used, though in this case
performance may be so poor that significant speedups are hard to achieve.

Since nearly all such machines use the Unix operating system, students
will probably need to be familiar with this. In addition, if it is a public
computer there will certainly be a batch processing system in place that will
need to be understood.

A way of visualizing the oscillator chain will also be very helpful, both to
make the results visible and as an aid in debugging. Especially if students
pursue higher dimensional applications — the 2d case is both reasonably ac-
cessible and highly instructive — then in my experience a good visualization
tool will be absolutely essential. Gnuplot is a freely available program that
allows the necessary visualization, though at a fairly basic level; some exam-
ples involving gnuplot are given below. However, other tools, such as VTK,
Matlab or Mathematica, could also be used.

3 Notes on the Exercises

Here I provide some hints and suggestions on the various exercises, with
the idea that you will choose what is appropriate to share (and when is the
appropriate time to share it!) with your students.

3.1 Exercises from Section 4.4

1. Compile and run the sample program from this section. This will likely
imwvolve a number of steps that are specific to your local computing en-
vironment, and it is essential that these basics be sorted out before pro-
ceeding further. Run the code several times with various numbers of
processors and observe the results.

This is a starter to make sure students know how to compile, link and
run on the system at hand.



2. Modify the sample code so that only the processor whose rank is half
the total number of processors actually prints the greeting. If the total
number of processors is odd, then only the processor with the largest
rank should print.

Basic MPI exercise, with branching on ranks.

3.2 Exercises from Section 4.6

Most of these exercises are straightforward applications of the send and re-
ceive functions, and require no comment.

3.3 Exercises from Section 5.2

The goal of these is to sort out all the “physics” issues involving time stepping,
boundary conditions, etc., before tackling the parallel version. This part of
the problem will be essentially unchanged.

1. To familiarize yourself with the equations of motion, write a serial
(single-processor) code to simulate N coupled masses using the above
algorithm. It is convenient to define m =1 — it appears only in combi-
nation with k so there is no need for two variable values.

You will need arrays x[] and v[] to hold the displacements and ve-
locities. Since we are using fake masses on the ends to implement the
boundary conditions, it is convenient to make these arrays N + 2 di-
mensional, and use the 0 and N + 1 elements of x[] to hold the fake
mass displacements. Thus elements 1, ..., N hold the displacements of
the actual masses. (The fake mass velocities never enter the problem
so we don’t really need these, but doing the same with v[] as with x[]
means that element ¢ of each array can refer to the same mass in the
chain. The wasted memory in the two extra elements is insignificant.)

2. Run the code for N = 2. Choose k around 1 for simplicity and experi-
ment with different time steps €. One way to determine useful values of
€ 15 to reduce € until the solution does not change within some desired
tolerance. For example, say we wish to calculate the mass displacements
at t = 10, to a relative accuracy of 107*. We could evolve the system
from t = 0 tot = 10 with decreasing values of €, until the relative
difference between the solution from one run to the next is less than

4



10~*. Of course, if € becomes too small then the increasing number
of steps required will make roundoff error more and more important.
Compare the “naive” (Euler) method we discussed above to the more
sophisticated leapfrog (“midpoint”) method.

Use gnuplot or another visualization tool to examine the oscillations
of the chain. (It is easiest to make 2d plots showing the displacement
of one mass versus time.)

Exploration should reveal that time steps as large as ¢ ~ 0.05 are
reasonable for a couple hundred time steps. The naive FEuler method
will be markedly worse.

. In this case there are two normal modes of oscillation, with frequencies
wy = k/m and w; = +/3k/m. Guess, or derive for yourself (or
consult a mechanics textbook [7] to find), the displacements for the two
normal modes. Set up initial conditions that match these displacements
and check that the system executes simple harmonic motion. Determine
the frequency from the simulation and check that it agrees with the exact
formula.

The two modes have the masses oscillating exactly in phase and exactly
out of phase, respectively.

. Compare your numerical results with the exact solution for one or both
of the normal modes, as well as a general linear combination of them,
and use this to further refine your value for e.

This is a nice test that will quickly show how far ¢ and the total number
of time steps can be pushed. It also gives the student some experience
with resolving the general motion into normal modes.

. Modify the code to calculate the total energy of the system (kinetic plus
potential for each particle) at each time step. Is the energy approzi-
mately constant in time?

The energy fluctuates a surprising amount, but oscillates fairly close to
the initial value.

. Modify the code so that there is a sinusoidal driving force at the left
end; i.e., give the fake mass i =0 a motion

xo(t) = Asin ot (1)

5



3.4

Start the system with x; = v; = 0 and examine the maximum steady-
state displacement of either mass over time. Observe that as & ap-
proaches one of the normal mode frequencies, the mazimum steady-state
displacement becomes large. Use this method of driving the system at a
variable frequency to determine the normal mode frequencies and com-
pare to the exact values.

Looking at the motion graphically will quickly reveal whether you are
close to a resonance, but to get accurate (say, three significant figures)
results you will probably want to have the code keep track of the max-
imum displacement over several periods of the normal mode.

The exact result for the normal mode frequencies with N masses is

cuZ—%sin2 S
" m 20N +1) )’

where n is the mode number. Use the driving technique to determine
several resonant frequencies for N = 10 and confirm this result.

Run the simulation for a large (N = 100 or more) chain initially in
equilibrium, but with the sinusoidal driving force. The disturbance cre-
ated by the driving force will propagate down the chain; determine its
(approximate) speed. Decide qualitatively how this propagation speed
should depend on w and confirm that this is the case. Does the propa-
gation speed depend on & ? If so, why?

Exercises from Section 5.4

. Now for the real problem! Write a parallel version of the chain solver

to run on some convenient number of processors. (It is helpful if this
number is not hard-wired into the code, so that it can be changed easily.
To this end, recall that you can find out how many processors there are
from within the code (while it is running) with a call to MPT_Comm_size.)
Leave the driving force in place at the left hand edge.

Remember that the standard send MPI_Send blocks either until the
message is received or it is buffered — its completion criterion is unde-
fined. So if two neighboring processors were to first send, then receive,
the code might hang: if MPI_Send does block until its message is re-
ceived then there is no way for the messages to get through, since no

6



receives ever get called! If MPI_Send buffers the message, by contrast,
then this actually works okay: the sends return after the buffering and
the (blocking) receives then collect the messages. But even if this works
on one system it may fail on another, so it is better to structure the
code so that it works whatever the local behavior of MPI_Send. (If you
are feeling ambitious, you can use non-blocking sends and receives here:
call one of each, then wait for the receive to complete and you're done.)

Outputting the string displacements will also require some thought.
The issue is that each processor has its own values and nothing more;
thus if each writes values to a file then you get a bunch of files, each
with data for part of the string. (This assumes the processors write
to files that have unique names; if they all write to the same file then
you get all the data interleaved randomly, or in other words gibberish —
not good.) Here are some ideas for approaching this. One simple way
is to have each processor write its displacements to a unique file, say
with a name like out.0.32 for the output of processor 0 at timestep 32.
Then you can just examine each of these individually using whatever
visualization tool you used with the serial code. Only slightly more
work would be to concatenate the files using a Unix command like

cat out*.32 > bigout.32

Since cat will take the output files in the proper order, the data in
bigout will be organized correctly to represent the whole string. Then
use the viz tool to look at it.

One could also do the assembly of the big file for the whole string in the
MPI code. The idea would be that whenever output is to be written,
each processor sends its displacement data to one “master” processor.
(Hence this will require a slightly different organization of the code than
that proposed above!) The master processor has an array big enough
for the whole string; it receives each processor’s contribution, stores
it in the appropriate place in the big array, and then writes the big
array to a file.! This will slow down the simulation somewhat since the
worker processors have to periodically send their whole configuration

To avoid unnecessary waste of a possibly large amount of memory, this big array could
be allocated dynamically. Thus each processor would have a pointer declared, but only
the master would call calloc to allocate space for it.



to the master, but it we only write out every 100 timesteps or so this
should not be too burdensome. Once the data is received by the master,
of course, the workers can go back to computing while the master does
the comparatively slow job of writing to disk.

Note that visualization will be an extremely useful debugging tool.
Since the serial code was already working, the likeliest source of bugs is
(surely!) the message passing. In many cases such errors will be mani-
fested as odd behavior at the boundaries of the subdomains. Visualizing
your solution as a disturbance propagates past such a boundary will
quickly reveal whether the message passing is working correctly or not.

. Once you are convinced that your MPI code is working properly, mea-
sure the speedup relative to the serial code for a fixed problem size. How
much of the theoretical speedup (factor of M for M processors) do you
obtain? If possible, increase the number of processors to the point where
the performance actually gets worse than that of the serial code. Why
does this happen?

For code timing, you can use
MPI_Wtime ()

This function takes no arguments and returns a double, the value of
the system clock. To time a section of code, call it before and after and
take the difference; this is the elapsed time:

double start, end;

start = MPI_Wtime ();

<... stuff to be timed ...>

end = MPI_Wtime ();

printf ("Elapsed time: %1f\n", end-start);

If you do this on every processor then each will print its elapsed time,
of course. This is a useful way of identifying load imbalances.

It is a good idea to time the code on every processor, to see how much
variation there is. Note also that MPI_Wtime can be used in the serial
code too (be sure to #include <mpi.h> but don’t call anyy other MPI



3.5

routines). It is a nice high-resolution timer and so useful in many
contexts.

The eventual drop-off of performance as the number of processors in-
creases is because that increase reduces the size of the sub-domains
treated by individual processors (for fixed overall problem size, of course).
At the same time the communication load is increasing, at least in terms
of number of messages. Eventually the computational load decreases
to the point where the communication overhead dominates, and the
parallel code actually runs more slowly than the serial code.

Exercises from Section 5.6

. Write a serial program to simulate the 2d case. Verify that the behavior

of your solution is reasonable. You should experiment with a variety
of boundary and initial conditions. Make sure you are able to visualize
the solution.

Regarding visualization, gnuplot can be used to make surface plots,
e.g., plots of the wave displacement plotted over the xy plane. You
may find if easiest to use contour plots — these are quick and show
quite clearly the general progression of a disturbance (wave). For basic
contour plotting try

gnuplot> set nosurface
gnuplot> set contour base
gnuplot> set view 0,0
gnuplot> splot ’data.file’

The first command turns off the surface that would be normally pro-
duced by splot, the second sets the contour plot to appear directly on
the xy plane, and the third sets the viewpoint to be directly above the
plane. The last command plots the data in data.file.

To avoid having to specify for gnuplot the organization of your data,
make the grid square and have your code separate the displacements for
each row with a blank line. For a 2 X 2 grid, for example, the data file
should look like this:



c
d

where a, b, ¢, d are some numbers. Unless instructed otherwise, gnuplot
assumes that data in this form — with N “blocks” separated by blank
lines, each of which has N numbers — represents data on a 2d uniform
grid, thus:

cd
ab

Again, this is mainly intended to work out the kinks in the physics part
of the problem and the visualization before tackling any parallelization.

. Write an MPI program to simulate the 2d problem, using the strip
decomposition discussed above. Specifying the initial state of the system
15 up to you, but one possibility is to have a sinusoidal “source” or
driving mass located along one edge. You could then watch the wave
disturbance spread out from the source, reflecting off the walls, etc.
Multiple sources will allow examination of interference phenomena.

A way of visualizing the results will again be quite helpful here. Watch-
ing the disturbance pass over a domain boundary will be the quickest
way of discovering whether there is a problem with the message passing.
The problem of combining the output from multiple processors to show
the entire plane is still a problem, though the concatenation method
discussed above will work for C.

It will probably be easiest conceptually to imagine the horizontal strips
(for C) assigned to increasing rank processors as you go up, i.e. pro-
cessor 0 has the bottom strip, etc.

. (Advanced) Write an MPI code for the 2d case using decomposition
in the “unnatural” direction for your chosen language. (lLe., for C,
decompose into vertical strips.)

This is really just a warm up for the next problem, as there is no reason
otherwise to do this — the extra overhead in managing the non-adjacent
data can only make the code slower compared to the previous version.

10



4

Your main problem will be sending the edge values, since the needed
array elements are not adjacent in memory in this case. You can of
course send each element individually, though this may not be the most
efficient approach. Another possibility would be to have 1d arrays to
hold the edge values to be sent/received. You could first copy the
needed elements from the 2d array of displacements to the 1d holding
array, then send this array with one message. On receipt, the data
could be stored in a holding array, then copied to the correct elements
of the 2d displacement array.

The best option would be to define a special datatype that corresponds
to an array column (for C) or row (for Fortran). This will require use
of the MPI “vector” datatype.

. (Advanced) Write an MPI code for the 2d case using a checkerboard

decomposition, that is, partitioning in both directions simultaneously.
If you have completed the previous exercise, no fundamentally new is-
sues arise, though the details are more complicated. Be sure to think
carefully about how processors are assigned to domains; this determines
which processors are “neighbors.”

If you wish to explore more advanced features of MPI, look in the doc-
umentation under “virtual topologies.” These allow you to define a vir-
tual grid of processors, each of which knows who its neighbors are. This
feature, along with the use of a derived datatype to send non-adjacent
strips of arrays, makes this advanced decomposition quite tractable.

With a working checkerboard simulation, study whether checkerboarding
or strip decomposition is faster for your system. Can you estimate the
parameters Ty and Ty from eq. (4) above?

The most involved application by far, especially if virtual topologies are
not used. If you try this one, you should at least use derived datatypes
for array columns (and perhaps even rows, for uniformity of treatment).

Sample Programs

A collection of sample programs in C is distributed with the module. They
typically take command line arguments, with some other parameters hard-

11



wired via #define statements. Comments in the programs explain the argu-
ments.
The programs included are:

1. helloworld.c
A basic MPI version of the old classic.

2. chain2serial.c

The two-element chain in serial form. Code for calculating energies is
present but commented out.

3. chainNserial.c

The N element chain in serial form, with a sinusoidal driver on the left.

4. chainNmpi.c

MPI version of the N element chain. The number of masses to simulate
is an input but it must be evenly divisible by the number of processors.
Note carefully the order of sends and receives.

5. mattressNMserial.c

Serial version of the 2d problem with N x M masses (hard wired).
There is a single sinusoidal driver mass on one wall but the rest of
the boundary is fixed to zero displacement. Pure Neumann boundary
conditions could be implemented here as well. Note that OUTSKIP is
the number of time steps between each writing to disk of the wave
configuration. With € ~ 0.1, say, not much happens in a single time
step!

6. mattressNMmpi.c

MPI version of the 2d code, using the natural strip decomposition.
Observe here where the message data is taken from and deposited.
The format for output file names is out . timestep . rank; this will allow
concatenation of files from the same time step to produce a file for the
entire domain.

12



