
Relaxation Methods for Partial Differential Equations:

Instructor Notes∗

David G. Robertson†

Department of Physics and Astronomy

Otterbein University, Westerville, OH 43081

(Dated: August 20, 2010)

Abstract

Some notes on the simulations are presented, along with solutions to the exercises. Please contact

the author if you have any comments or suggestions.

∗ Work supported by the National Science Foundation under grant CCLI DUE 0618252.
†drobertson@otterbein.edu

1

mailto:drobertson@otterbein.edu

CONTENTS

I. Goals and Time Needed 2

II. Solutions to Exercises 3

III. Notes on the Simulation Projects 5

IV. Overview of Sample Programs 12

I. GOALS AND TIME NEEDED

This module is an introduction to relaxation techniques for solving elliptical partial dif-

ferential equations, notably the equations of Laplace and Poisson, with application to elec-

trodynamics. Its principal goals are:

• to provide an opportunity to develop insight into electrostatics; and

• to familiarize students with the basic concepts involved in the numerical solution of

partial differential equations.

In my experience, working through these kinds of exercises is a great way to develop

intuition about how electrodynamics works. The need to translate formulas from vector

calculus into concrete expressions that can be evaluated by a computer is an excellent way

to learn what these formulas actually mean. The ability to produce solutions to Laplace’s

equation for situations that would be difficult or impossible to analyze analytically helps

develop intuition about how electric phenomena operate.

The minimal physics background required includes electrostatics at the level of a typical

junior-level course. Students should ideally have studied Laplace’s equation and the analyt-

ical approaches to its solution, as well as, e.g., the relation between surface charge density

and normal component of electric field. It is conceivable that students who have taken only

calculus-based introductory physics could also benefit from this module, with appropriate

preparation. Vector calculus is probably essential.

There is considerable flexibility in which parts of this module that you use. The most

interesting and instructive problems are those relating to lines of charge and the capacitance

2

of concentric rectangles. But there is a lot of interesting computational physics just in

generating solutions (with or without point charges) in a rectangular domain, calculating

the electric field, etc. For those with more time, advanced topics on overrelaxation and the

multigrid approach can be explored.

My estimate is that one to two weeks of class time, assuming 3-4 hours per week in class

and some work outside of it, should be sufficient to explore the basic numerical issues and

develop codes to solve Laplace’s equation in several geometries, including determining the

capacitance of nested rectangles. If the instructor wishes to pursue some of the elaborations,

in particular the multigrid approach, then an additional week or so will probably be needed.

II. SOLUTIONS TO EXERCISES

1. Eq. (4.3) can be rearranged to give

V (x+ h)− V (x) = h
dV

dx
+O(h2). (2.1)

Hence
dV

dx
=
V (x+ h)− V (x)

h
+O(h), (2.2)

showing that the error made in the “asymmetric” difference formula is O(h). This

means that to cut the error in half, we must reduce h by a factor of two.

The Taylor expansion also implies

V (x+ h)− V (x− h) = 2h
dV

dx
+O(h3), (2.3)

since all terms with even powers of h cancel in the difference. Hence

dV

dx
=
V (x+ h)− V (x− h)

2h
+O(h2), (2.4)

and the symmetric difference formula is accurate to O(h2). In this case, to cut the

error in half we must reduce h by a factor of only
√

2.

2. The solution follows the development given in the text. Expressed in polar coordinates

the laplacian takes the form

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
(2.5)

3

Difference expressions for the various first and second derivatives can be obtained as

before by Taylor expansion:

f(r + ∆r, θ) = f(r, θ) + ∆r
∂f

∂r
+

1

2
∆r2

∂2f

∂r2
+ · · · (2.6)

f(r, θ + ∆θ) = f(r, θ) + ∆θ
∂f

∂θ
+

1

2
∆θ2

∂2f

∂θ2
+ · · · (2.7)

The final result is

∇2f =
1

r

[
f(r + ∆r, θ)− f(r −∆r, θ)

2∆r

]
+
f(r + ∆r, θ) + f(r −∆r, θ)− 2f(r, θ)

∆r2

+
1

r2

[
f(r, θ + ∆θ) + f(r, θ −∆θ)− 2f(r, θ)

∆θ2

]
+ · · · (2.8)

If desired, this can be solved for f(r, θ) to give an iteration rule in terms of neighboring

points.

3. In integral form Gauss’s law reads∮
~E · d ~A = 4πQencl

(Gaussian units). In two dimensions the surface integral is taken over a line enclosing

the charge Qencl. For a point charge take as a gaussian surface a circle of radius r

centered on the charge. Then the usual symmetry arguments apply and the surface

integral reduces to ∮
~E · d ~A = |~E| · 2πr

(assuming q > 0 so the electric field is directed radially outward). Setting this equal

to 4πq gives the desired result

|~E| = 2q

r
. (2.9)

Note that this is identical to the field of an infinite line of charge in three dimensions;

in this case one takes a gaussian cylinder (radius r and length l) and obtains∮
~E · d ~A = |~E| · 2πrl = 4πλl, (2.10)

where λ is the (positive) charge per unit length. Hence

|~E| = 2λ

r
. (2.11)

4

The potential is now given by

V (r)− V (r0) = −
∫ r

r0

~E · d~l = 2q ln(r0/r), (2.12)

where we set V (r0) = 0. Note that in this case we cannot take the reference point

r0 →∞, since the logarithm becomes ill-defined. Of course, in any question involving

potential energy we will encounter a difference of such logarithms, in which r0 will

properly cancel.

4. Apply Gauss’s law in integral form to the surface of the conductor. By symmetry the

electric field is normal to the conductor surface; hence the surface integral reduces to∮
~E · d ~A = 2|~En|l, (2.13)

where l is the length of the gaussian curve. Gauss’s law then implies

|~En|l = 4πλl, (2.14)

where λ is the charge per unit length on the conductor surface. Hence

|~En| = 4πλ. (2.15)

III. NOTES ON THE SIMULATION PROJECTS

In this section I collect some notes and suggestions for the simulation projects. I have

deliberately left the student manual fairly general, placing most of the hints here. That way

you can choose what and when to reveal to the students.

1. Jacobi vs. Gauss-Seidel

This project will get the students through many of the basic issues and problems of

the module.

If working in a programming language like C, C++ or Fortran, the program design

is relatively straightforward. There should be a two-dimensional array to hold the

potential values on the grid, including the boundary surfaces where the potential (or

its derivative) is specified. The sweep through the grid only passes over “interior”

points, of course. A good way to test for convergence is to keep a record of the largest

5

fractional change in value in one iteration step; when this drops below a specified

threshold the code stops and prints the result.

Sample programs (written in C) are provided. Programs jacobi.c and gauss.c im-

plement the basic schemes with fixed boundary conditions, while gauss-pbc.c uses

periodic boundary conditions. The program overrelax.c implements over-relaxation.

It is possible to perform these calculations in Excel, although the size of the grid and

the number of iterations will be rather limited. It may be instructive, however, since

the student can easily see what is happening in each iteration. Thus even if they will

eventually implement the calculations in a standard programming language, it may be

worth some time to examine the approach in Excel.

Note that some of the algorithms, e.g., Gauss-Seidel and multigrid, will be quite

difficult to implement in Excel. The Jacobi method is fairly straightforward, however,

and it can easily be extended to incorporate overrelaxation. If you are limited to using

Excel then this would be a good exercise showing at least one technique for speeding

things up.

A sample Excel file implementing the Jacobi method with overrelaxation on a 20 × 20

grid is included. Basically it lays out a grid of starting values, with the boundary values

set by the user and the interior points set equal to the average of the boundary values.

One then sets up a second grid below the first, with the boundary cells referencing the

initial boundary points and the interior cells set to calculate the average of nearest

neighbors in the initial grid. One can then copy and paste this grid structure below

the previous one, with the copies referencing the grids just above. Be sure to paste the

grids in the same relative position so that the references are propagated correctly. As

the iteration proceeds the solution will “fill in” from the edges and then settle down

to a steady state. Achieving high accuracy in the solution will be difficult since going

past about 20 or 30 iterations may become tedious, but the general trend should be

discernible.

The best way I have found to evaluate the change in the solution from one iteration

to the next us using the Excel function SUMXMY2, which can compute the sum of

(V n+1
i,j −V n

i,j)
2 over the lattice; when divided by the number of lattice points this gives

a measure of the average change in the iteration.

6

Speeds can be measured on a Unix system using the time command, or an internal

timing routine. Alternatively, one can simply count the number of calculations done

in the relaxation; this is proportional to the number of iterations times the number of

(interior) grid points. This will be the only option if Excel is used for the calculations.

Students should find that Gauss-Seidel is indeed faster than Jacobi by roughly a factor

of two, i.e., takes about a factor of two fewer total calculations.

The initial guess can also have a noticeable impact on the rate of convergence. (Of

course, if one guessed the exact solution the relaxation would converge in a single

iteration!) For example, in the sample code the the effect of setting interior points to

the average of the boundary values, compared with setting them to zero, also amount

to about a factor of two in speed. The variation in final values obtained from different

starting points should be comparable to the overall tolerance specified.

Contour plots will be the best way to examine the results of the calculation. If you

are using gnuplot, you can try this set of commands:

set contour both; set cntrparam levels 30

unset clabel

unset surface

set pm3d map

set size ratio -1

splot "outfile" with line palette notitle

Here outfile is a text file containing potential data. This can simply be the potential

values printed one per line as you sweep through the grid by rows. Data for successive

rows should be separated by a blank line in the file. Alternatively, you can print data

in the form x, y, V (x, y).

In Excel, use the chart tool and look under “Surface.” It is helpful to first make a true

surface plot, i.e., a 3d plot where the height of the surface is given by the potential

value. This allows you to set the number of increments in the z direction. This is

how you change the number of contour levels, i.e., the spacing between data values for

which different contours are drawn. Once the z increment is set, switch to a contour

plot to see the result.

7

2. Electric Field

This is a rather straightforward exercise in computing the gradient of the potential.

The derivatives should be computed using one of the formulas given in the text. Stu-

dents should verify that the field is perpendicular to the boundary surfaces.

Examples of these calculations are given in several of the sample codes, notably

sheets-pbc.c (see the commented statements near the end).

3. Adding Charges

Specification of charge strengths and locations can be handled in may ways; for ex-

ample, the sample code allows users to specify a strength and x and y values for any

number of point charges as command line arguments. The main difference here is that

we include the 4πρi,j term in computing the updates to V .

Students can now verify that the potential of a single point charge falls off logarithmi-

cally, i.e., if r → 2r then the potential decreases by a factor ln 2 (for a positive charge).

Dipoles and other charge configurations can be studied. The potential contours will

look qualitatively similar to those in three dimensions, although the detailed behavior

is different.

The square boundary will introduce some error unless the correct logarithmically-

varying boundary values are computed. In practical applications one does not have

the luxury of doing this since the potential is not known beforehand, so it is better to

think about the effect of the boundary and how it can be minimized. The obvious idea

is to move it farther away. At least for points close to the central charge, a distant

boundary should have minimal effect. Students can study how this effect diminishes

with distance, especially since they can compute directly the exact result (for a single

point charge) for comparison.

If the discrete laplacian in polar coordinates has been developed, then these can be

employed with a circular boundary. In this case it is clear from symmetry that the

potential depends only on r, hence the potential has a fixed value on the boundary.

Since we are free to add a constant to the potential this can be set to any value desired,

even zero. In this case the circular symmetry will be realized exactly and the expected

fall-off of V ∝ 1/ ln r will be clear. (Indeed in this case nothing depends on the polar

8

angle θ so the problem is really one-dimensional. The grid can be made one unit in

size in the angular direction, and the relations

V (r, θ ±∆θ) = V (r, θ)

assumed in the updates.)

The boundary effect should fall off faster for a dipole, since there is a screening effect

and the long-range field falls off as 1/r2 (potential as 1/r).

If there is time and interest, students can experiment with periodic boundary con-

ditions as an alternative to direct specification on the boundary. This is physically

equivalent to having an infinite array of neighboring “cells” with the same charge con-

figuration. Those distant images do contribute to the potential but they do so in a

way that is smoother than just specifying a fixed value on a rectangular boundary –

they allow the potential to at least vary over the boundary surfaces in something like

the correct way.

Most of the sample programs allow point charges to be sprinkled across the domain if

desired.

4. Parallel Sheets of Charge

This problem is a paradigm for capacitance calculations.

The easiest way to proceed is to use two edges of the domain as the “plates,” setting

them to some specified potential (not the same!). Use periodic boundary conditions in

the direction along the plates; this has the effect of making the problem translationally

invariant in that direction, equivalent to infinite plates. This again becomes in effect

a one-dimensional problem.

To determine the capacitance of the plates you will need to compute the charge on

each plate. This can be determined from the normal component of the electric field

at the surface, as discussed in the text. This gives a charge density that can be

used to calculate the capacitance per unit area. The standard result should of course

be recovered (in Gaussian units!): C/A = 1/4πd. The sample program sheets.c

implements this calculation.

9

Perhaps more instructive is to introduce actual sheets (lines) of equal and opposite

charge, not on the boundaries, and solve Poisson’s equation both between and outside

the plates. In this case one faces some interesting issues associated with boundary

conditions.

The simplest approach is to stretch the lines of charge across the domain and impose

periodic boundary conditions in the direction along the sheets; this is then equivalent

to infinite lines of charge. In this case we expect a constant electric field (linear poten-

tial) between the plates, and zero field (constant potential) outside. What boundary

conditions should we impose in the direction perpendicular to the plates? It is clear

that a constant value should be chosen, but the potential is not the same above and

below the plates.

To see how to proceed, note that given one solution to Laplace’s (or Poisson’s) equation

we can obtain another by adding a constant to V , that is, by adding the same constant

to all the Vi,j.

This just reflects that the physical object is the electric field, which is the gradient of

V ; hence adding a constant to V does not change ~E. In the discrete approximation

it is easy to see that if Vi,j is a solution, meaning that upon iteration we recover the

same values for Vi,j, then Vi,j + c will also be a solution, i.e., will be reproduced upon

iteration.

Now we can use this freedom to assume that the potential is defined so that V above

the plates is equal and opposite to V below the plates. If this were not the case, we

could just add to V whatever constant was needed to make it so. We can enforce

this in the simulation by imposing anti-periodic boundary conditions in the direction

perpendicular to the sheets. That is we require

Vbottom = −Vtop.

This leads straightforwardly to the correct results. See sheets-pbc.c for an example

calculation.

If one wishes to study a single sheet, then some additional thought is required. In

this case the potential is not constant anywhere (the electric field is constant, so the

potential is increasing or decreasing linearly with distance on either side of the sheet).

10

Now if we place the sheet in the middle of the domain, then by symmetry we will have

Vbottom = Vtop.

To simulate a single slab, then, place it at the center and impose periodic boundary

conditions in the perpendicular direction.

Finite slabs are also well worth studying. If they have equal and opposite charges

and are centered in the domain, then by symmetry we again expect Vtop = −Vbottom
(though these will no longer be constant along the edges of the domain). So we again

use anti-periodic boundary conditions in this direction. In the direction along the

slabs, one can try both imposing a fixed value (the same on both sides if the plates are

centered) and periodic boundary conditions. Since the true potential is not constant

on these surfaces, the constant value will introduce some distortion into the solution.

This can be reduced, however, by moving the boundaries farther away from the plates.

Alternatively, periodic boundary conditions allow the potential to vary along the

boundary surfaces, and so permit a closer realization of the true solution. They effec-

tively place an “image” of the plates in a neighboring domain (on each side), which

contribute to the potential in the region of interest. Again, however, if the bound-

ary surfaces are moved farther away the effect will diminish. (For sufficiently large

distances the potential should fall off as 1/d, since the plate configuration has zero

monopole moment.) Students should find the periodic conditions work best here. The

program sheets-finite.c allows both options to be explored.

In all these cases, the potential difference between the sheets can be read off from

the solution to Poisson’s equation and the capacitance per unit area determined in

the usual way. Since this system is equivalent to the textbook infinite parallel plate

capacitor in three dimensions, the standard result should be recovered (in Gaussian

units!): C/A = 1/4πd. For finite plates this will be reproduced only approximately,

of course, since the finite capacitor will not have a uniform charge distribution on the

plates.

A final point about charge sheets. In the textbook treatment the field depends on

the charge per unit area, for infinite sheets. This area is not the area covered by our

domain, however! Our domain has one dimension along the sheet – together with the

11

direction “out of the page” this is the plane of the sheet. Hence the charge density in

our simulation, times the grid spacing h, gives the charge per unit length along the

sheet, or per unit area if one is considering the three-dimensional problem.

5. Concentric Rectangles

The general approach here is the same as before. The outer rectangle should be

the boundary of the domain. The inner and outer rectangles are held at specified

potentials, so the potential difference between them is known. Then use relaxation to

determine V in the region between them. From this the normal electric field can be

computed, giving the charge density on each surface. This will not be constant, so

the total charge will have to be obtained by adding the contributions from each small

segment of the surface:

A =

∫
σdA.

As a check, the surfaces should have equal and opposite charges. (A tricky point is to

make sure the normal electric field has the correct sign.) Finally, the capacitance of

the system is determined as C = Q/∆V . I find a result of about 0.0052 for a square

capacitor with the inner boundary one third the size of the outer. The sample code

rectcap.c implements this calculation.

IV. OVERVIEW OF SAMPLE PROGRAMS

A set of sample programs, written in C, is distributed with the module. Typically they

take some command line arguments, with other parameters hard-wired via #define state-

ments. Comments in the programs explain the arguments.

1. jacobi.c

Implements the basic Jacobi algorithm for a rectangular domain, with fixed boundary

conditions. Charges may be added via command line arguments.

2. gauss.c

Implements the Gauss-Seidel method for a rectangular domain, with fixed boundary

conditions. Charges may be added via command line arguments.

12

3. gauss-pbc.c

Implements Gauss-Seidel in a rectangular domain with periodic boundary conditions.

Charges may be added via command line arguments.

4. overrelax.c

Implements Gauss-Seidel with overrelaxation, as described in section IV.A of the stu-

dent manual. The overrelaxation parameter ω is specified on the command line, as

are the strengths and locations of any charges.

5. sheets.c

Gauss-Seidel relaxation for parallel “sheets” of charge, modeled as two sides of the

domain boundary (the horizontal sides). These two sides are held at constant potential,

with periodic boundary conditions imposed in the other direction. Calculation of the

induced charge and capacitance are also performed.

6. sheets-pbc.c

Gauss-Seidel relaxation for two sheets of charge specified as actual lines of charge in

the domain. In this version the sheets traverse the entire domain in the x direction,

with periodic boundary conditions. The y location of the sheets, and the charge per

unit area on each, are specified via command line arguments. Anti-periodic BCs are

used in the y direction, as discussed above, although the user can also experiment with

fixed boundary conditions.

7. sheets-finite.c

Gauss-Seidel for finite sheets, modeled as lines of charge (parallel to the x axis) that

do not stretch across the domain. Periodic BCs are used in x and anti-periodic BCs

in y; the sheets should be centered in the domain to produce the correct symmetries.

8. rectcap.c

Solution of Laplace/Poisson in a rectangular domain, with calculation of the capac-

itance. Point charges may be added between the rectangles via command line argu-

ments.

13

9. multigrid.c

Implements the multigrid transformations described in sect. IV.B. At each stage the

user controls the location in the grid hierarchy as well as the relaxation criteria (i.e.,

whether to relax for a specified number of iterations or to a specified tolerance).

10. multigrid-auto.c

Implements an automated multigrid approach similar to the “Full Multigrid Algo-

rithm” described in the text. The calculation starts at the coarsest level and proceeds

to finer and finer grids, halving the grid spacing and relaxing to the specified tolerance

at each stage. When relaxation is complete on the finest grid, the simulation stops.

14

