

First Do No Harm: Deferred Error Handling –

A Curricular Approach to Exceptions
 Duane Buck

Otterbein University
Westerville, Ohio

614-823-1793

dbuck@otterbein.edu

ABSTRACT

This paper advocates the adoption of deferred error handling

within computer science curricula. It argues that it is both a sound
development strategy and aligns well with pedagogically. By

deferring error handling, the student better appreciates its

subtleties and its importance as an independent topic. This paper

also includes other topics which may enhance curricula: an

analysis of error reporting patterns, a taxonomy of error handlers,

and factors influencing the selection of error reporting patterns.
Much of the discussion is language independent, but specific

attention is given to deferred handling of Java checked exceptions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Error Handling and Recovery

General Terms
Algorithms, Reliability, and Languages.

Keywords

Java, Checked Exception, Refactoring.

1. INTRODUCTION
When executing an application, there is a path through the

application’s instructions as one service after another is requested
of the underlying application programming interface (API) and

fulfilled. Ultimately this results in the application providing one

of its functions. This is referred to here as a “direct-path.”

However, some requests may not be satisfied, for various reasons,

and require alternative processing, which is not considered part of

the direct-path.

When using older languages, such as C, exceptional conditions

were reported back to the caller as return codes. Each return code

had to be meticulously checked by the programmer even if an

error was unexpected (usually indicative of a bug). There was a

major advance when newer languages, such as C++, introduced

modern exception handling. This made it possible to code the
direct-path without getting bogged down explicitly coding

alternative actions for error conditions. For unexpected errors

(usually program bugs), nothing needs to be coded. This is

because unexpected problems lack specific solutions, enabling a

default handler to take care of them. When debugging, the default

handler usually supplies debugging information and terminates

the activity in progress. Because this behavior may be unsuitable
when an application is released, a custom default handler is

usually installed. For instance, it might apologize to the user, log

the error, and restart the system. Therefore, the programmer only

has to explicitly catch the exceptions that are expected (usually

indicative of invalid input data).

The exception mechanism improves reliability because it is no
longer possible for a programmer to forget to a check return code.

An ignored return code was very harmful to system reliability

because in the event of an error because execution continued as if

nothing was wrong. This led to both incorrect results and difficult

debugging. In contrast, with modern exception handling, the

programmer does not handle unexpected exceptions at all, and if
they forget to handle an expected exception, the system behaves

well, reporting it through the default handler as a bug, which in

fact it is!

Error coding is best deferred until after a program has been

initially debugged. This is because error coding (1) potentially

masks bugs, (2) adds to the amount of code being debugged
simultaneously, (3) often requires a scope larger than the method

being coded, (4) requires a specialized skill set, and (5) competes

for attention with coding the (usually more interesting) direct-

path. Although all of these factors may not be appreciated,

deferred error handling naturally occurs, if for no other reason

than that it is more fun to get something basically working before
worrying about the edge-cases.

This was a blissful state of affairs except for the problem that it

was up to API designers to document expected exceptions, and up

to the programmer to read the documentation. Otherwise, if an

expected exception was not triggered during debugging, no

handler would be included. In production, if the exception
occurred, the default handler would be triggered reporting it as a

bug. The designers of Java were concerned about this issue.

They attempted to further improve reliability by supporting a

second type of exception for problems arising “outside of the

immediate control of the program” (expected exceptions). A

checked exception requires explicit coding by the programmer.

With this change, the lack of an exception handler for an expected

exception is statically detected at compile time, rather than during

debugging, a welcome improvement.

Unfortunately, the designers of Java did not recognize the

importance of deferred error handling during development. They

classified the lack of explicit checked exception handling a
compilation error, rather than a warning, so that it could not be

ignored by the programmer, even temporarily. The side effect of

this decision is that nothing can be debugged until after some

form of error handling has been coded. By forcing the

programmer to code error handling before they can compile and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’12, Month 1–2, 2012, City, State, Country.

Copyright 2012 ACM X-XXXXX-XX-X/XX/X…$10.00.

start debugging, the programmer may be more likely to code a

dysfunctional exception handler, creating a situation much worse

than if the exception was not explicitly caught. [1, 2]

To minimize the coding of dysfunctional exception handlers, this
paper proposes deferred exception handling, where the

development of specific handlers is deferred until after initial

debugging. As stated earlier, this naturally occurs in modern

languages other than Java, and may be why the community has

not fully realized its importance. In Java, explicit coding is

required to defer writing application specific error handling.
Fortunately, it is not difficult and worth the effort because of the

benefits discussed above and also provides curricular advantages.

The primary focus of this paper is on how deferred error coding is

useful in the computer science curriculum, independent of its

general applicability. However, it also presents several other

topics that may suitable for inclusion in the undergraduate

curriculum. Section 2 introduces patterns available to API

designers for informing applications when requests cannot be

satisfied. Section 3 discusses in detail those patterns that deal

with expected situations. Section 4 examines exception handling

in Java when exceptions are poorly classified, and includes

examples from standard Java classes. In Section 5 the “deferred
error coding” curriculum approach is presented where the

application’s direct-path is completed before refactoring its error

handling. Its implementation using Java is also addressed.

Section 6 discusses refactoring error handling. Section 7 provides

a different point of view as it examines the design of an API’s

error reporting. After the conclusion is presented in Section 8,
Section 9 provides CS1 and CS2 curriculum units.

2. EXCEPTIONAL SITUATIONS

2.1 Unexpected Exceptional Situations
An unexpected exceptional situation is triggered by one of two

conditions. It may be (1) an as yet undetected program bug, or (2)

a system error (e.g., out-of-memory). That is, one does not expect

(plan for) a program bug or a failure unrelated to either the
application or its input. Limited remediation is possible, usually

involving reporting the problem and terminating the activity.

There are two ways for an API to signal an unexpected error.

These are return codes (also called status codes) and exceptions.

Return codes are problematic in unexpected situations. The

programmer is often most interested in getting the central task
done and forgets to go back and check the return codes while

refining the program. If something goes wrong, the program

continues running and the origin of the error is lost. Another

difficulty is that in a completed application a large amount of the

program involves checking return codes superfluous to its normal

functioning. The checks take time to write and debug, and
obscure the important steps when reading the program. The

modern exception mechanism was invented for these reasons. [3]

In modern languages, (unchecked) exceptions should always be

used for reporting unexpected situations.

2.2 Expected Exceptional Situations
An expected exceptional situation, while triggered by factors

outside the immediate control of the program, nonetheless can be
anticipated, like invalid user input. An API designer can choose

one of three ways to interact with the application programmer: (1)

a return code from the request, (2) exceptions defined as part of

the request interface, and (3) validity checking prior to the

request. The factors involved in selecting the error reporting

mechanism for a particular API will be discussed in Section 7.

3. REPORTING EXPECTED ERRORS

3.1 Return Codes
Using return codes is problematic for expected situations because,
as with unexpected errors, if the programmer fails to check them

execution continues and the origin of the error is lost. But, even

with this problem, modern APIs sometimes use return codes.

After he extensively reviewed the literature of error handling and

recovery, Tellefsen [7, p. 50] concluded that “return codes are

useful for returning error information, simply because they are
easier to use, and they would probably be used even if they were

disallowed by project guidelines.” A return code often takes the

form of a single return value being multiplexed so it is either a

result or a status indicator.1 The Java library Map class get()

method is an example of this. It returns an object reference in the

normal case, or else it returns null. An application programmer
may find return codes beneficial, because the if/else construct

is familiar and easy to code. However, he or she needs to be

cognizant of the danger of not checking a return code and losing

the source of an error. This is more likely to happen with a

multiplexed return code, because it is tempting to code the

function inside another expression, assuming no error will occur.

3.2 Conventional (Unchecked) Exceptions
Once exception handling mechanisms were available, return codes

were no longer required. Now, one can simply assume that a

requested function will be carried and code the direct-path. The

program will work in the direct-path but not be able to recover

from any type of error (including invalid user input). If a

requested function cannot be carried out, the default handler
reports the error (usually including a stack-trace) and terminates

the activity.

Through testing (or preferably reading the documentation)

expected exceptions can be “caught” by the suspended method on

the stack that can resolve the situation. The programmer only has

to worry about the expected exceptions and put code into the
location capable of handling each situation.2 If the programmer

fails to recognize an expected exception and code the handler, it

does not create debugging nightmares. However, programmers

must to deal with the more difficult exception handling

mechanism, compared to the familiar if/else construct.

3.3 Java Checked Exceptions
The addition of language exception handling mechanisms was a
welcomed advancement. The designers of Java hoped to further

improve reliability by having the API formally classify exceptions

as either unchecked or checked.

Unchecked exceptions are defined to represent application

program bugs or system errors from which the client cannot

reasonably recover. In terms of this paper, because a client is not
expected to make any specific provision for them, unchecked

exceptions appear to be unexpected. On the other hand, checked

exceptions are defined to represent situations that arise outside of

1 Alternatively, an API can provide a separate method to access

the return code (e.g., Scanner, see Footnote 8 below).

2 In some cases, finally blocks will also be required lower in

the call hierarchy (to release resources, for example).

the immediate control of the program, and from which a client can

reasonably be expected to recover: Checked exceptions appear to

be expected. The intent of the language designers was to relieve

application programmers of the burden of depending on the
documentation and debugging to inform them of expected

exceptional situations. When a method invocation might trigger a

checked exception, the compiler statically checks that an

alternative action has been specified. As discussed in Section 1,

requiring handlers before debugging has proven problematic.

3.4 Validity Query Methods
For expected errors, when an API supplies methods to check the

validity of requests before they are made, it may provide the best

qualities of return codes and unchecked exceptions without their

drawbacks. The programmer uses the familiar if/else

construct to code the alternative action, as with return codes. If

the programmer forgets to do the validity check, an exception

signaling the expected situation will (hopefully) occur during

testing. This gives a meaningful stack-trace pointing to the

problem. Also, the programmer can choose to catch the exception

instead of using the query method if that makes the coding easier.

4. JAVA EXCEPTION CLASSIFICATIONS
In addition to the problems discussed in Section 1, another

problem with classifying exceptions is that the classifications are
idiosyncratic because the guidelines require interpretation. Some

exceptions, which for all practical purposes are expected, are

confusingly classified as unchecked, and vice-versa. For

example, the familiar method int Integer.parseInt

(String s) is a library function that converts the input s to an

int. The origin of the input is almost certainly from outside of
the program (probably an end-user), so it would be expected to

occasionally be incorrect. However, parseInt() throws an

unchecked exception when given invalid input.3 An apparent

misclassification of this kind, where an expected exception is

classified as unchecked, does not cause a major problem. It

results in the bug being found at run-time versus at compile-time,
as would be true in a language without checked exceptions.

The opposite problem is more troublesome in the Java libraries.

Quasi-system errors, like network outages and database problems,

from which there is no reasonable expectation of recovery for

most applications, are classified as checked. Also, expected and

unexpected situations are sometimes merged into one checked
exception class. This is the case with IOException which is

thrown by the read() method of several IO classes. If an expected

error occurs (like losing a connection to a network resource,

which is outside the control of the programmer), this exception is

properly thrown. However, it is also thrown if a program bug

3 If the Integer API provided a function to check a string for

valid integer syntax, it would be correct to consider passing an

invalid string to parseInt() unexpected.

resulted in the object being closed. This is inexplicable because

clearly it should be reported by a RuntimeException

indicating a program bug. (An obvious candidate would be

InvalidStateException.) Because there are different
reasons that the exception might have been thrown, it is unclear

how to remedy the situation, and the programmer may continue

execution after a program bug is detected, thus causing the same

problems as forgetting to check return codes.

In the experience of the author, third party APIs sometimes

classify all of their exceptions as checked, even if they are due to
a programming bug, even though this goes against the published

guidelines. This may be because their designers, for esthetic

concerns, want to have all of their exceptions directly under a

common ancestor. But, there is at least one additional reason.

When the matter was brought to the attention of the developer of

such an API, he said that it was the only way to make sure the
exceptions were caught. This developer was a computer science

PhD. student with many years of Java experience working in a

research team. He continued to hold his view after it was

challenged. This experience may be indicative of how poorly the

community understands the purpose of checked exceptions, which

inhibits their accuracy as a classifier.

Table 1 identifies how to handle exceptions classified under the

four combinations of checked versus unchecked and expected

versus unexpected. The upper left and lower right quadrants

correspond to correctly classified exceptions; this is what the

designers of the Java language were seeking to have happen. The

upper right and lower left quadrants (in grey) specify the actions a
programmer should code for exceptions that are misclassified.

Note: “Deferred error coding” as defined below treats all errors as

unexpected until refactoring.

5. CURRICULUM IMPLICATIONS
Error coding is an important but complex topic that deserves

attention in the curriculum. When an API does not use checked

exceptions, there tends to be a natural division of coding into two
phases. Expected exceptions are often addressed after the

program is basically working. During testing, if a handler is

missing for an expected exception, the exception will (hopefully)

be triggered and result in a stack-trace and termination of the

activity, helping locate the bug.

In attempting to improve the Java language, its designers
inadvertently created a troublesome issue in the curriculum. The

problem with Java checked exceptions is that they force the

student to attempt error coding at inopportune times. For

instance, the try/catch block must be addressed in early

assignments because of the use of the Java libraries. A more

important concern is that students are forced to divide their
concentration between the direct-path, which is their central

concern, and error handling. The result can be that the student

learns expedient but dysfunctional error coding. Examples of

dysfunctional error coding are: (1) ignoring an exception, (2)

noting but otherwise ignoring an exception, (3) fixing-up an

exception that is actually indicative of a bug, and (4) using the
throws clause for an exception that has subtypes.

The solution is to teach “deferred error coding” which includes

two phases: coding and debugging the direct-path in preparation

for refactoring the error handling. To prepare for refactoring,

when a student encounters a method invocation that may throw a

Table 1: Handling of the four classifications of exceptions

 Unexpected Expected

Unchecked

Use the default

handler (may be set

by application).

Insert a try/catch

for the exception at the

point where a corrective

action is possible.

Checked

Use default handler

by wrapping the

exception inside an

unchecked exception

and throwing it.

Insert a try/catch as

above and also list the

exception in throws

clauses of any methods

deeper in the stack.

checked exception, they are taught to insert the invocation into

this standard boilerplate template:4

 try {

 theMethod();

 } catch (TheCheckedException ex)

 {throw new RuntimeException(ex);}

Then, the student can more easily code the direct-path, which may

be all that is required in early assignments. If anything goes

wrong, the default handler5 will be invoked and the student will

come to understand the circumstances leading to the exception.

Advanced assignments will require students to refactor the error

coding. This may involve both studying the API and testing to

determine which checked exceptions are actually expected in the

context of the application. For those, the student will code an

alternative action. The student might have to include multiple

lines of code in a try/catch block, sometimes need to use a

throws clause to send the exception to the next level, and

perhaps have the need for a try with a finally clause to

release resources. Refactoring of exception handling is explored

further in the next section.

There are several advantages to using the deferred error coding

approach. The student programmer is taught an expedient coding
approach that is not dysfunctional when first starting out. Early

on the student will see in which contexts things can go wrong and

trigger exceptions. Later the student will learn how to refactor his

or her application to create a robust solution. In courses that

explore API design other topics discussed here may be addressed.

Deferred error coding and refactoring is also defined for the other
API error reporting patterns: conventional exceptions, validity

query methods, and return codes. Like deferred coding for

checked exceptions, it allows the direct-path to be coded

expediently, yields good debugging information, and provides a

foundation for the refactoring that follows. The CS1 and CS2

curriculum unit outlines in Section 9 briefly present those topics
in addition to deferred handling of checked exceptions.

6. REFACTORING ERROR HANDLING
In the previous section, dysfunctional coding was avoided by

transforming each checked exception into a

RuntimeException. That is an alternative to fully addressing

error handling while coding the direct-path of an application.

When refactoring, one needs to examine each location where a
RuntimeException is thrown and ask how the code should be

altered. One of two things should be done. This depends on

whether the situation is expected or unexpected in the context of

the application.

4 The default code template for checked exceptions in Eclipse is

similar, except that the handler notes and then ignores the

exception. A simple solution would be to create an Eclipse
template based on the boilerplate template shown here.

5 Although unnecessary during development, when an application

is deployed, the developer should write a custom

UncaughtExceptionHandler with the end-user in mind,

in case an unexpected exception occurs. It should be set as the

default handler using the Thread class method
setUncaughtExceptionHandler(). The use of a

default handler is described by Longshaw and Woods [5, p. 14]

as the “Big Outer Try Block Pattern.”

First, even for a well classified checked exception, the exception

may not be expected in the context of given application. Also,

one must be wary of misclassification pitfalls when using APIs. If

a method throws a vague, generic checked exception (perhaps
Exception or a direct descendant like IOException) be

suspicious that it is really an unexpected exception. Another way

to determine if the exception is expected is to ask if there is

anything that could be done within the application to resolve the

problem. If not, it is probably best treated as unexpected. Finally,

if the exception occurs during testing (unless it is due to a
program bug), it should be treated as expected.

If the checked exception is expected, a fix-up should be coded

during refactoring. Either the body of the catch should be

replaced or the try/catch block should be eliminated and the

exception caught elsewhere, as discussed in the previous section.

If the exception is unexpected, the try/catch code should be

left in place, but slightly altered to indicate that its refactoring has

been completed. To document that the error is unexpected and

requires no further refactoring, a different exception should be

thrown. For that purpose, the application should declare another

exception type that extends RuntimeException. A good

name for this class is UnexpectedException.

The error code refactoring phase requires much more than

learning the syntax of the try/catch statement. It is beyond the

scope of the present paper to discuss exception refactoring

comprehensively. The paper by Chen et al. [1] has an excellent

discussion of refactoring exception handling. Only the broad

issues are discussed here. There are three major categories in the
taxonomy of handlers: (1) “message/terminate,” (2)

“message/rollback”, and (3) “retry/fallback.

A message/terminate handler is usually provided by the default

uncaught exception handler, which assumes the exception was

due to a bug and tailors the message to the programmer by

providing debugging information. (When deployed a custom
default handler is installed.) Occasionally, a message/terminate

handler is specifically coded for an unrecoverable situation not

resulting from a program bug. In this case, the message would be

tailored to communicate with the end-user.

A message/rollback handler is used in the case where a single

request could not be competed, but the system may be capable of
completing other requests. The request is often an action

requested from a user-interface. The handler informs the user,

and then needs to transfer control back to the “event loop” so the

user can make additional requests. The difficulty with this type of

handler is that must ensure that partially completed execution of

the request does not invalidate further execution of the
application. Borrowing from database terminology, the

transaction must be rolled back, as if it never occurred.

The retry/fallback handler first tries to complete the function of

the method invocation, which may involve attempting the same

action again and/or executing an alternate implementation.

Usually after some number of failed tries, it falls back to
message/rollback or message/terminate, depending on the context

and the severity of the issue.

The choice of handler should be based on the cost and benefit

analysis within a particular context. If feasible, retry/fallback

provides the best user experience, but also the highest

development cost. If retry/fallback is not feasible or not cost

justified, then message/rollback should be considered, as it

provides the next best user experience. If it is not feasible or not

cost justified, then the least desirable, but also least expensive,

message/terminate is the only other choice

7. API DESIGN IMPLICATIONS
The underlying problem to be solved in an API is how to give

feedback to the application regarding an action it requests or plans

to request. As discussed earlier, some form of return code may

always be with us even though using return codes is problematic.

The use of return codes is justified for especially common
situations, like a failure searching for a substring.

Although enforcing alternative coding at compile time through

checked exceptions may appear beneficial, as has been discussed

extensively, throwing checked exceptions tends to encourage

dysfunctional error coding and should be used with caution.

Additional concerns have also been raised. Robillard and Murphy

[6, p. 2] discuss how coding using the checked exception

mechanism tends to lead to “complex and spaghetti like exception

structures.” Another concern with checked exceptions is noted by

Haase at the end of his summary: “The benefits of checked

exceptions can be summarized by saying that their use provides

documentation and ensures that exceptions are handled. There is
however a downside to this, namely that checked exceptions

reduce flexibility.” [4, p. 94] He goes on to describe causes of

reduced flexibility and discusses design patterns that address those

problems in large systems. His “Unhandled Exception” pattern is

the most important in the context of the present paper.

The above concerns about checked exceptions are serious and

recognized by the wider software community. The designers of
the post Java language C# chose not to include checked

exceptions [8], and according to Chen et al. [1, p. 335]

“unchecked exceptions are preferred in several well-known open

source projects written in Java, including the Eclipse SWT project

and the Spring Framework.”

A better alternative to both checked exceptions and return codes
may be to provide a separate query method that an application can

use to evaluate a request’s validity. If the request is valid, the

application can make the request and the proper outcome is

guaranteed.6 If the programmer fails to make the check, and an

invalid request is made, a runtime exception will be thrown,

triggering the default handler.7 Using a validity query for each
type of request, programmers employ the if/else construct,

with which they have vast experience. This makes the query style

easier to code and read for many application programmers. The

designers of the Scanner class used query methods.8 Because

6 Query methods are not applicable when external events can alter

the validity of the request asynchronously.
7 The programmer might catch the exception instead of using a

query method if that simplified his or her application.

8 It is interesting that Scanner has a little known “return code

retrieval” method, ioException(), which returns the

IOException last thrown by the Scanner's underlying

Readable, or null if no such exception exists. It was added

relieve the programmer from having to deal with

IOException. The programmer should check that the
method returns null before executing a user action. Otherwise,

an IOException is treated as end-of-file, and unintended

action may result. Many users may unknowing use applications

that class is a recent addition to the Java library, its designers may

have called upon experience to point to that solution.

8. CONCLUSION
Java checked exceptions, although in theory beneficial for
reporting expected exceptions, have created a problem in the

curriculum. They distract the student from the central function of

their project, and force them to use constructs they may not yet

understand. The recommendation made here is to have students

follow the two phases of “deferred error coding.” The first phase

implements the direct-path and keeps the code base behaving in a
predictable manner.9 As the student gains more insight, he or she

will enter the second phase and refactor the handlers.

The Appendix presents curriculum units on deferred error coding

and refactoring. Independent of those units, a significant benefit

will follow from discussing with students the dangers involved in

handling checked exceptions. The Hippocratic Oath includes

“First, do no harm,” which is good advice in this context. The

student should be instructed to code using the standard boilerplate

template presented in Section 5 whenever they encounter a

checked exception that they either: (1) think will not occur, or (2)

are unsure of how to handle. This will take little class time and

will significantly reduce the level of dysfunctional error coding.

9. APPENDIX – CURRICULUM UNITS

9.1 CS1 – Deferred Error Coding
I. The ideas behind deferred error coding:

A. We want to cause any error to throw an uncaught

exception so that the default handler will be invoked if a

problem takes us off the direct-path.

B. This lets us actually use the program as long as there are
no problems encountered (invalid input, for example).

C. It also lets us get familiar with the potential problems

because the default handler prints a stack-trace and
terminates the activity.

D. Deferred error coding also sets the stage for the subsequent

step of refactoring the error handling so that expected

situations, such as invalid user input, are smoothly handled
without invoking the default exception handler.

II. Deferred coding of method invocation handlers:

A. If the method’s API documentation mentions that an

unchecked exception might be thrown:

1. The only thing you should do is add a comment,

2. It should document the potential expected exception

B. If the method’s API documentation says it throws a
checked exception:

1. You should code the method invocation using the
following template:

 try {theMethod();}

 catch (TheCheckedException ex){

 throw new RuntimeException(ex);}

2. No comment is needed, as this is self-documenting.

C. When the API supplies a validity query method that

have this bug. Scanner’s complex solution is a good case

study of problems encountered when using checked exceptions.
9 This is called Goal Level G1, also known as failing-fast, which

is the first step in the refactoring methodology presented by

Chen, et al. [1]

corresponds with the request:

1. You should insert a comment adjacent to the request,

2. Describe the validity query method.

D. If a request has a return code (also called status code):

1. Note that in some cases, you must follow a request
with the request’s status query function to get the code.

2. The returned quantity may be:
 a) A pure status code, often an int, having several

possible values, one representing success and the

other values indicating various types of failures.
b) A single returned quantity that is multiplexed, so

that a null value (or a negative value for an integer

result) indicates a failure, and other values are the

result of the request.

3. In either case, code using the following template:

 Object result = x.request();

 if (result == null) throw

 new RuntimeException(

 "x.request() returned null");

a) The result variable should be of the type returned.

b) Code the correct test to detect the request’s failure.

c) Pass a meaningful message to the constructor.

4. No comment is needed, as this is self-documenting.

III. Executing a program coded in this style:
A. You will be able to use it for its purpose,

B. However it will crash on any error, e.g., invalid input.

9.1 CS2 – Refactoring Error Coding
I. The ideas behind refactoring error coding:

A. We will examine each of the locations in the code that can

trigger an uncaught exception.

B. Only if we determine that the potential problem is expected

will a fix-up will be coded.

C. For problems that we do not expect, the error handling will
not be changed. Those will still use the default handler.

II. To prepare for refactoring:
A. Run the program many times and try to make it crash in

every possible way.

B. For each crash, note the circumstance, the exception that

was thrown, and the line number.

C. If there are some errors you can’t trigger, it may be that

those are unexpected in your application.

III. Refactoring error coding:
A. Search through the source code for locations that have

been flagged:

1. For unchecked exceptions and validity query methods,
there will be comments.

2. For checked exceptions and return codes there will be

code that throws RuntimeException.

B. For each flagged location, determine whether or not the
potential problem is expected:

1. If you were able to trigger the error, the error is
probably expected.

2. If you were not able to trigger the error:
a) If there is an obvious corrective action you could

take, the error is expected.

b) If, logically, the error could not possibly occur,

based on your program, it is unexpected.

C. If the problem cannot be determined to be either expected

or unexpected, do nothing to the code.

D. If the problem is determined to be unexpected, we will just
flag the code so we don’t have to revisit the question:

1. For unchecked exceptions and validity query methods,
update the comment documenting potential error.

2. For checked exceptions and return codes change from
throwing RuntimeException to instead throw

UnexpectedException, which should extend

RuntimeException in your application.

E. If the problem is expected you should code a fix-up. This
may be quite involved; these instructions are only general:

1. For unchecked exceptions you need to code a
try/catch block to accomplish the fix-up.

2. For checked exceptions you need to replace the body
of the catch clause or eliminate that try/catch

and code one elsewhere to accomplish the fix-up.

3. For validity query methods you need to add an

if/else construct testing the validity query method

to accomplish the fix-up.

4. For return codes replace the body of the if statement
to accomplish the fix-up.

IV. After refactoring the error coding:
A. Your application should recover from invalid conditions.

B. With more experience using the program, you might

encounter errors which you have not refactored:

1. You can revisit the refactoring process at any time
because the errors that have not been refactored are

still identified either by a comment or a thrown
RuntimeException.

2. It is important to not refactor errors not understood:
a) The default exception handler will report them

b) Attempting a fix-up will likely compound the error

C. When an application is deployed, it should have a custom

default handler to log any unexpected error encountered
and inform the end-user of an issue.

10. REFERENCES
[1] Chen, C., Cheng, Y. C., Hsieh, C., and Wu, I. Exception

handling refactorings: Directed by goals and driven by bug

fixing. Journal of Systems and Software 82:333–345, 2009

[2] Goetz, B. “Java theory and practice: The exceptions debate”

Available via search at http://www.ibm.com, May 2004.

[3] Goodenough, J. B. Exception handling: issues and a

proposed notation. Communications of the ACM,
18(12):683–696, 1975.

[4] Haase, A. Java idioms: exception handling. In Proc. of the

EuroPLoP’2002.

[5] Longshaw, A. and Woods, E. Patterns for the generation,

handling and management of errors. In Proc. of the

EuroPLoP’2004.

[6] Robillard, M. P. and Murphy, C. Designing robust Java

programs with exceptions. ACM SIGSOFT Software

Engineering Notes, 25(6): 2-10, November 2000.

[7] Tellefsen, C. An Examination of Issues with Exception
Handling Mechanisms. Master’s thesis, Norwegian

University of Science and Technology, 2007.

[8] Venners, B. with Eckel, B. “The Trouble with Checked

Exceptions” (A Conversation with Anders Hejlsberg, Part II)
http://www.artima.com/intv/handcuffs.html, 2003.

